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Abstract

We empirically and theoretically show that uncertainty’s impact on firms’

investment decisions depends on its source in the supply-chain. A real-option

model with time-to-build predicts that only upstream uncertainty suppresses

firms’ economic activity, since upstream uncertainty from suppliers affects firms

in the shorter-run, while downstream uncertainty from customers affects the

longer-run. Using production-network data, we provide micro-level evidence

that upstream (downstream) uncertainty is negatively (positively) related to

firm-level investment and valuations, as predicted theoretically. At the macro-

level, these two uncertainties oppositely predict aggregate consumption, output,

and investment growth. Lastly, COVID-19-induced uncertainty is predomi-

nantly downstream, which need not hinder economic recovery.
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The global economy experienced unprecedented uncertainty during the Great Re-

cession and the COVID-19 pandemic. Accordingly, a growing literature in macroeco-

nomics and finance documents that increased uncertainty is typically associated with

lower investment, output, and stock prices.

By and large, the literature has taken a “top-down” approach to study the effects

of uncertainty: either by constructing measures of aggregate uncertainty, or by as-

suming common examining uncertainty shocks in equilibrium models. In contrast,

this paper takes a “bottom-up” approach and studies firms’ investment decisions

under micro-level uncertainties that originate from different locations in their supply-

chain environments. What is the relation between a firm’s upstream uncertainty (i.e.,

uncertainty originating from suppliers) and its investment or valuation? Is there a

similar relation between a firm’s downstream uncertainty (i.e., uncertainty originat-

ing from customers) and these variables? When aggregated, do both uncertainties

suppress economic growth and financial markets, and rise in recessions? We address

these questions both theoretically and empirically.

By combining two comprehensive datasets on dynamic supplier-customer relation-

ships, we document a great deal of asymmetry between the impact of firms’ upstream

and downstream uncertainty. We theoretically predict, and then empirically show,

that higher upstream uncertainty strictly decreases firm-level investment, sales, and

valuation ratios, whereas higher downstream uncertainty either has no effect or a

positive effect on these variables. The fact that downstream uncertainty can spur

micro-level real and financial outcomes is novel, and contrasts the commonly docu-

mented negative interaction between economic growth and other facets of uncertainty.

We also show that this asymmetry holds at the aggregate level. Using a measure

of upstreamness (i.e., distance to final consumers) based on the Bureau of Economic

Analysis Input-Output tables, we classify industries as upstream or downstream, and

compute the macro-level uncertainty of each group. We then show that macro-level

upstream and downstream uncertainty induce polar opposite and significant impacts

on aggregate variables, such as consumption, output, investment, and the market’s

valuation, in line with the micro-level evidence. Moreover, we show that the marginal

utility of investors rises (falls) with more upstream (downstream) uncertainty. This

stark difference between the two uncertainties, and the positive effects of downstream
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uncertainty in particular, may explain why the causality or the magnitude of the

relation between uncertainty and the economy is sometimes called into question.

Our results bear implications for policymaking. First, knowledge of whether in-

creased macro-level uncertainty is driven by upstream or downstream firms can assist

policymakers to project whether a contractionary shock will be amplified by uncer-

tainty fluctuations. For example, we find that the increase in uncertainty during the

COVID-19 crisis was mostly driven by downstream firms, and may not hinder the

economic recovery. Second, we show that the impact of downstream uncertainty on

investment turns positive for longer-duration investment projects. Thus, regulation

that prolongs the incubation period of projects may attenuate the adverse effect of

uncertainty on the economy.

To motivate the empirical analysis, we consider an intuitive distinction between

the horizons at which upstream and downstream uncertainty impact firms. A typical

investment project is comprised of three steps: purchasing inputs from suppliers, using

these inputs to assemble an output product, and then finally selling this product to

customers. In reality, the middle stage takes considerable time and is often referred

to as “time-to-build.” This includes the time required to process the inputs, perform

R&D, clear regulatory bars, and construct any necessary equipment. Consequently,

upstream uncertainty that is associated with uncertainty about input prices from

suppliers typically affects firms in the short-run, while downstream uncertainty that

is associated with uncertainty about the selling price to customers typically affects

firms in the longer-run.1 We check whether this intrinsic horizon-based asymmetry

between the two uncertainties yields different implications for firms’ investment.2

We construct a real-option model of investment under these supply-chain uncer-

tainties to address the former point. To build intuition, we start with a discrete-time

1The economic fundamentals of a firm’s suppliers (e.g., their technology or markup shocks) affect
the firm’s input price by shifting the supply of inputs (assuming supply and demand curves are
not perfectly elastic). Thus, upstream economic uncertainty is related to input-price uncertainty.
Likewise, uncertainty about customers’ fundamentals is related to uncertainty regarding the firm’s
selling price, as this downstream uncertainty affects the variability of future demand shocks.

2Of course, there could be exceptions to this horizon-based asymmetry. In some cases, investments
involve pre-paid orders. In other cases, futures contracts that hedge output price variation (e.g., for
certain commodity producers) may exist. Nonetheless, to the extent that actual production entails
an exchange of goods with suppliers before an exchange of goods with customers, this horizon-based
asymmetry is largely descriptive of the typical investment project. In our empirical analysis we find
evidence that supports this assumption of horizon asymmetry, through the lens of our model.
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model in which uncertainty lasts one period, and then generalize the results to a

continuous-time model. The firm is endowed with a growth option. Upon exercising

the option, the firm buys an input from its supplier, builds a production line, and then

sells a stream of output to its customer. Notably, the second stage of the investment

project involves time-to-build: if the real option is exercised at time t, then the firm

can only sell its first product at t + τ , for τ ≥ 1. The project is partially reversible due

to an abandonment option. Given this setting, the firm solves an optimal stopping

problem and chooses between investing now and waiting.

Importantly, the underlying economic fundamentals of the supplier and the cus-

tomer vary over time. This shifts the input supply and the output demand, and

results in input and output price fluctuations, respectively. Consequently, economic

uncertainty over fundamental shocks that originate upstream (downstream) drives

uncertainty over both the future input (output) price and the supplier’s (customer’s)

valuation. We employ these interactions in the empirical analysis.

Because input and output prices fluctuate regardless of whether the firm invests

today, there is value in waiting for new information to arrive before committing to

the partially irreversible project. This benefit of waiting applies to learning about

either input or output prices: higher upstream or downstream uncertainty increases

the likelihood of extreme outcomes, and enhances the option value of waiting.

However, there are also two opportunity costs of waiting to invest. First, if the

future input price rises by more than the output price, then the project can become

uneconomical despite having a positive NPV today. Thus, the firm can lose a positive

revenue stream by not investing today. This opportunity cost does not depend on the

amount of upstream uncertainty, but increases with downstream uncertainty since

the lost revenues become larger as output prices rise. Second, by not investing today,

the firm forgoes any profits during the waiting period. This forgone revenue becomes

stochastic with time-to-build, as the missed revenue depends on the future output

price that is realized when the time-to-build period ends. The option to abandon the

project caps these forgone revenues from below, and makes this opportunity cost a

convex function of the future output price. Consequently, this cost of waiting increases

with downstream uncertainty, but is unaffected by upstream uncertainty.

The fact that the opportunity cost of waiting rises with downstream uncertainty,
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but is unrelated to upstream uncertainty, creates asymmetry between the two un-

certainties. If the time-to-build period is sufficiently large, then higher downstream

uncertainty can cause the opportunity cost of waiting to dominate the benefit, and

hasten investment. In all, we hypothesize that: (i) the relation between upstream un-

certainty and investment is unambiguously negative, and (ii) the association between

downstream uncertainty and investment is weaker in absolute value, but can even be

positive. As investment and stock prices comove in general-equilibrium models, the

same conjectures apply to valuations.

Motivated by these hypotheses, we collect data on supplier-customer relationships

from two sources: Compustat Segments and Factset Revere. The former source is

available for a longer time period, whereas the latter is more novel, contains signifi-

cantly more relationships, but is only available for a shorter time period. We combine

these sources to obtain the most complete dynamic data on each firm’s customers and

suppliers available. Notably, input and output prices are not directly observed in the

data.3 Yet, as previously noted, a firm’s input (output) price uncertainty is positively

related to uncertainty over the valuations of its suppliers (customers) in equilibrium.4

We verify this relation using the NBER-CES manufacturing database. Consequently,

we measure the upstream (downstream) uncertainty of each firm using the realized

volatility of its suppliers’ (customers’) stock returns. While we acknowledge that

return volatility is backwards looking, robustness tests show that using a forward-

looking proxy based on option-implied volatility yields similar results.

We then estimate panel regressions in which the dependent variable is a firm’s

investment rate, price-to-earnings ratio, sales growth, or inventory growth, and the

independent variables include the firm’s upstream and downstream uncertainties, the

firm’s own uncertainty, and a host of controls. We show that upstream uncertainty

is associated with a significant reduction in all variables of interest, consistent with

hypothesis (i). In contrast, higher downstream uncertainty either has no effect or a

positive impact on these outcomes, in line with hypothesis (ii). We also find that the

effect of a firm’s own uncertainty on these variables becomes muted when controlling

3Similarly, economic fundamentals such as real variables are not available at a sufficiently high
frequency to construct a reliable volatility measure.

4This result is used widely in the literature. For example, in the context of investment-specific
technology shocks, the return of investment firms net of consumption can proxy for the relative price
of investment goods (see, e.g., Kogan and Papanikolaou (2014)).
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for the supply-chain uncertainties.

Importantly, the validity of the empirical evidence does not depend on the as-

sumptions of our economic model, including the horizon-based asymmetry. As such,

we do not rule out that the findings may arise for reasons outside of our framework.

Nonetheless, we test our proposed economic mechanism in two ways. First, we split

firms into groups based on their sectors as a proxy for time-to-build. This is moti-

vated by the notion that the construction of perishable goods is quicker than that

of durable or capital goods (e.g., the time required to produce a bottle of water ver-

sus a water desalination machine). The “short” time-to-build group only includes

the producers of non-durable consumption goods and services, whereas the “long”

time-to-build group includes durable goods producers and the investment sector. We

find that the relation between downstream uncertainty and investment is significantly

higher (more positive) for the “long” time-to-build group, consistent with the theory.

Second, we show that the positive (negative) effect of downstream (upstream) uncer-

tainty is amplified (attenuated) for firms whose abandonment option is less costly, as

proxied by the degree of capital redeployability.

While our theory pertains to firm-level outcomes, we also examine whether the

asymmetry between upstream and downstream uncertainty holds at the aggregate

level. To this end, we use the BEA’s Input-Output tables to construct “upstreamness”

scores that capture each industry’s weighted distance from final consumption good

production (see Antràs and Chor (2018) and Gofman, Segal, and Wu (2020)). We

dynamically classify each industry as upstream (downstream) if its upstreamness score

is in the top (bottom) of the cross-sectional distribution of these scores. To parallel the

firm-level analysis, we use the realized stock return volatilities of these two portfolios

as our proxies for the macro-level upstream and downstream uncertainties.

We then compute impulse responses from each type of macro-level uncertainty to

output, consumption, and investment growth, the market’s price-to-dividend ratio,

and the risk-free rate, using the smooth local projection (SLP) method of Barnichon

and Brownlees (2019). Controlling for both uncertainties, the impulse responses from

upstream (downstream) macro-level uncertainty shocks to the variables of interest are

negative (positive), in line with the micro-level evidence. In absolute terms, the neg-

ative impact of macro-level upstream uncertainty is stronger than the positive impact
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of macro-level downstream uncertainty. Lastly, we estimate the prices of risk of the

predictable components of the two macro-level uncertainties using a GMM procedure.

In line with the impulse responses to consumption, we find that macro-level upstream

(downstream) uncertainty has a negative (positive) price of risk. That is, upstream

(downstream) macro uncertainty increases (decreases) investors’ marginal utility.

Finally, we show that the component of downstream uncertainty that is orthogonal

from upstream uncertainty is procyclical, and typically drops in recessions. However,

while the recent COVID-19 crisis was accompanied by increased uncertainty, we find

that this rise in uncertainty was predominantly due to higher downstream uncertainty.

Through the lens of our results, this suggests that the COVID-19 recession may not be

deepened by higher economic uncertainty. In fact, so long as downstream uncertainty

remains more dominant, recovery could be relatively swift.

In all, our evidence highlights that not all types of uncertainty cause or are asso-

ciated with recessions: downstream uncertainty may induce the opposite effect.

1 Related literature

The empirical literature in macroeconomics and finance typically documents a

negative relation between uncertainty and economic activity. On the macro side, the

negative association between growth and uncertainty is shown in Ramey and Ramey

(1995), Martin and Rogers (2000), Engel and Rangel (2008), Bloom (2009), and Baker

and Bloom (2013), among many others. Recently, Nakamura, Sergeyev, and Steinsson

(2017) estimate growth and volatility shocks for a panel of countries, and report a

negative relation between the two.5 Likewise, most asset-pricing studies suggest that

higher aggregate uncertainty lowers valuations. Bansal, Khatchatrian, and Yaron

(2005) show that consumption volatility is negatively related to price-dividend ratios.

Boguth and Kuehn (2013) and Bansal, Kiku, Shaliastovich, and Yaron (2014) show

that consumption uncertainty has a negative price of risk, whereas Drechsler and

Yaron (2011) report that higher macroeconomic uncertainty positively predicts risk

premia. The negative effect of uncertainty on asset prices also holds for other types

of uncertainty, such as fiscal or monetary policy uncertainty (Pastor and Veronesi,

2012; Croce, Nguyen, and Schmid, 2012; Baker, Bloom, and Davis, 2016; Bretscher,

5Refer to Bloom (2014) for a comprehensive survey of uncertainty and macroeconomic growth.
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Hsu, and Tamoni, 2020; Husted, Rogers, and Sun, 2020) and the common component

of idiosyncratic volatility (Herskovic, Kelly, Lustig, and Van Nieuwerburgh, 2016).6

A small set of papers finds evidence that uncertainty’s impact on growth and

prices can be positive, at least for certain outcome variables or particular types of

uncertainty. For example, Stein and Stone (2013) find that uncertainty depresses

investment and hiring, but encourages R&D. In contrast, we show that the positive

effects of downstream uncertainty are not confined to R&D, but extend to a wide range

of outcomes, including capital investment, consumption, and stock prices. Other

papers find ambivalent links between different facets of uncertainty and prices. Segal,

Shaliastovich, and Yaron (2015) distinguish between the negative and the positive

semivariances of industrial production and show that the latter semivariance can

increase stock prices.7 We focus on total variation, and show that total variance has

different implications depending on where it originates in the supply chain. While

Segal (2019) considers cross-sectoral heterogeneity in uncertainty, and finds the TFP

volatility of final consumption (investment) good producers has a negative (positive)

impact on prices, our baseline decomposition of uncertainty into its upstream and

downstream components is firm-specific, and is not based on a firm’s sector. In most

cases, the firm, its customers, and its suppliers operate within the same sector.

In line with the former studies, we demonstrate that not all facets of uncertainty

are negatively correlated with the real and financial economy. Yet our evidence is

granular: we start with micro-level analysis, and show that the same conclusions

hold at the macro-level. The findings also demonstrate that the effect of uncertainty

shocks can propagate both upstream and downstream, yet with different implications

6Some studies also argue that in contrast to the former papers, the negative relation between
uncertainty and growth or prices is either weak or non-causal. Dew-Becker, Giglio, Le, and Rodriguez
(2017) find that only short-run (realized) volatility is priced by investors. Ludvigson, Ma, and Ng
(2020) use a structural vector autoregression approach to show that macroeconomic uncertainty
shocks do not cause a decline in industrial production, but the converse is true – a drop in output
predicts higher macro uncertainty. Our paper can perhaps reconcile the mixed evidence regarding
the strength or the causal impact of aggregate uncertainty on the real and the financial economy.
We show that aggregate uncertainty has a component (namely, the downstream part) that often
exhibits a positive correlation with growth and prices. Due to the offsetting effects of upstream
and downstream uncertainty, the association between total macro-level uncertainty and economic
growth may become less pronounced or ambiguous.

7Other papers that depart from Gaussianity or feature an ambivalent relation between uncertainty
and prices include Okou, Jahan-Parvar, Feunou, et al. (2018); Dou (2017); Bekaert and Engstrom
(2017); Bianchi, Kung, and Tirskikh (2019).
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and magnitudes.8

The theoretical literature that treats uncertainty shocks as exogenous typically

shows that uncertainty leads to depressed investment, consumption and output.

Higher uncertainty can induce higher markups (see, e.g., Fernández-Villaverde, Guerrón-

Quintana, Kuester, and Rubio-Ramı́rez, 2015; Basu and Bundick, 2017), or higher

credit spreads and cost of capital (see, e.g., Christiano, Motto, and Rostagno, 2010;

Gilchrist, Sim, and Zakraǰsek, 2014; Arellano, Bai, and Kehoe, 2019), which lowers in-

vestment. Real-option studies (see, e.g., Dixit (1992), Pindyck (1993), Bloom (2009)

and Alfaro, Bloom, and Lin (2019)) show that uncertainty can inhibit investment

due to a “bad news principle” (Bernanke, 1983). Uncertainty implies that future bad

states are more severe. With investment irreversibility, there is a greater benefit of

waiting for new information to avoid the potential loss incurred by investing just be-

fore a bad state is realized,9 as the opportunity cost of waiting (namely, the forgone

profits during the waiting period) is typically deterministic.

Nonetheless, related studies suggest that real-option models can be enriched to

introduce a countervailing force. With certain assumptions, uncertainty can raise

the opportunity cost of waiting and/or expected profits (i.e., the “growth option”

value). In these theories, a mean-preserving spread leads to an unbounded upside

but a capped downside, suggesting an increase in expected profits by convexity (see,

e.g., Oi, 1961; Hartman, 1972; Abel, 1983). One assumption that yields an increase

in the growth option value, and the opportunity cost of waiting, is time-to-build (see,

e.g., Majd and Pindyck (1987) and Bar-Ilan and Strange (1996)).

Our contribution vis-à-vis these studies is threefold. First, we cast the notion

of time-to-build into a (reduced-form) supply-chain environment, and study a model

that features two types of uncertainty. We show that the time-to-build mechanism ap-

plies to downstream (customer-level) uncertainty but to for upstream (supplier-level)

uncertainty. Second, our empirical findings provide strong support for the prediction

of these “growth option” theories and, in particular, the time-to-build channel. Em-

8While our paper considers the propagation of second-moment shocks, ample existing studies
consider the propagation of first-moment shocks, along the supply chain (see, e.g., Atalay, Hortaçsu,
and Syverson, 2014; Acemoglu, Akcigit, and Kerr, 2016; Baqaee, 2018; Carvalho, Nirei, Saito, and
Tahbaz-Salehi, 2021, among others).

9Also see, for example, Abel, Eberly, et al. (1994) for a detailed exposition of investment under
uncertainty in a model featuring adjustment costs and irreversibiltiy.
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pirical evidence in favor of this channel hinges on our decoupling of uncertainty into

its upstream and downstream parts. Third, we show that the interaction between

upstream and downstream uncertainty can lead to a separate channel through which

downstream uncertainty hastens investment, even in the absence of time-to-build.10

2 Theoretical evidence

We present theoretical evidence showing the differential effects of upstream and

downstream uncertainty on firm-level investment. To build intuition, Section 2.1

presents a discrete-time model in which uncertainty only lasts a single period. Section

2.2 then generalizes this model to a dynamic and continuous-time setting.

2.1 Building intuition: uncertainty lasting one period

Consider a firm deciding whether to invest in a capital input (e.g., a machine or

a stock of inventory) that is purchased from its supplier (denoted by s) to produce

a flow of output products to sell to its customer (denoted by c). Time is discrete,

and the firm can either invest in the project today (time 0) or wait until next period

(time 1). We assume the investment option expires at time 1 for ease of exposition.

Both the customer firm and the supplier firm have economic fundamentals denoted

by zc and zs, respectively, that can fluctuate over the first period. These fundamentals

can capture technology, markup, or utilization shocks.11 Whenever the fundamental

zc (zs) changes, the output demand (input supply) shifts, changing the input (out-

put) price. For example, a positive (negative) productivity shock to zc increases the

demand for the firm’s output, and increases (decreases) the sale price. Likewise, a

positive (negative) productivity shock to zs increases the supply of the firm’s inputs,

and decreases (increases) the input price. While first-moment shocks to zc or zs can

each affect relative prices with opposite signs, second-moment shocks to these funda-

mentals always increase the variability of relative prices, regardless of the underlying

10Upstream uncertainty implies that the future input price could increase sharply, while the output
price could simultaneously rise, but only moderately. In this case, the investment’s project NPV can
turn negative, even if the current NPV is positive. Thus, a firm delaying investment in the presence
of upstream uncertainty may suffer a potential loss of the future revenue stream (which positively
depends on the output price). Therefore, the opportunity cost of waiting increases with downstream
uncertainty, creating an asymmetry to upstream uncertainty. See more details in Section 2.1.

11In principle, the customer (c) could represent a household. In this case, the economic funda-
mental zc may represent a taste shock, which shifts the demand for the firm’s output.
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nature of zc or zs. Consequently, upstream uncertainty, V art[zs,t+1], is positively re-

lated to input price uncertainty, whereas downstream uncertainty, V art[zc,t+1], relates

to output price uncertainty. In equilibrium, the valuations of the supplier and the

customer also reflect zs and zc, respectively. We use this observation to examine the

model’s implications in the data.

Accordingly, both the input price, paid to the supplier s, and the output price,

received from the customer c, can change between time 0 and time 1. The input price

at time 0 is Ps,0 = Ps, but the price at time 1 (Ps,1) will increase to Ps+σs or decrease

to Ps−σs, with equal probabilities. Thus, Ps,1 is a mean-preserving spread of Ps,0, and

E[Ps,1] = Ps,0 and V ar[Ps,1] = σ2
s . This suggests that σs is associated with upstream

uncertainty. Likewise, the current output price is Pc,0 = Pc. Letting h represent

a constant greater than one, the output price at time 1 (Pc,1) will (1) increase to

Pc + hσc (“very good” news); (2) increase to Pc + σs (“good” news); (3) decrease

to Pc − σc (“bad” news); or (4) decrease to Pc − hσc (“very bad” news), with equal

probabilities. Thus, Pc,1 is a mean-preserving spread of Pc,0, and ∂V ar[Pc,1]/∂σc > 0.

Therefore, σc is associated with downstream uncertainty. For simplicity, we assume

that output price uncertainty only lasts between time 0 and time 1, and consequently

Pc,t = Pc,1 ∀t > 1. These price dynamics are outlined in Figure 1.

Figure 1: Input- and output-price dynamics under the discrete-time model
The figure illustrates the dynamics of the input price from suppliers (Panel A) and output price to
customers (Panel B) in the discrete time model of Section 2.1. Ps (Pc) denotes the unconditional
price of the input (output). σS (σC) positively relate to upstream (downstream) uncertainty.
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To start the investment project at time t, the firm first needs to acquire the

capital input for price Ps,t. Acquiring the capital input allows the firm to build up

its production line, and then produce one unit of output per period. No additional

capital is required beyond the capital input purchased at t. The marginal labor cost

for each unit of product is constant over time, and is given by ω > 0. Therefore, the
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cash inflow during every period τ ≥ t in which production takes place is Pc,τ − ω.

For the purpose of illustration, we assume that σc > Pc,0−ω > 0. This suggests that

the cash inflow is positive under the “good” or “very good” news case for Pc,1, but

negative under the “bad” or “very bad” news case for Pc,1.

The time discount factor of the firm’s owner is β. Given β, the project’s NPV

at time 0 is positive (i.e., the real option is in the money). To make the dynamics

non trivial, we assume that the effect of input price uncertainty (σs) on the viability

of the project depend on the future output price. If the input price Ps,1 increases to

Ps + σs, but the output price also increases by a large amount (i.e., the “very good”

news case for Pc,1), then the project is still viable at time 1. However, if the input

price increases, but the output price rises by a smaller amount (i.e., the “good” news

case for Pc,1), then project has a negative NPV at time 1.

The investment is partially reversible. When production starts, the firm can

abandon the project for a cost of a > 0. The firm will not abandon the project under a

“very good” or a “good” realization of Pc,1. We assume that 0 > Pc−σc−ω+a(1−β) >

(h− 1)σc, meaning that the project is only abandoned in the “very bad” news case.

Lastly, we consider two separate assumption for the production process.

Model 1: No time-to-build. Once the decision to invest is made, and input

is purchased from the supplier, the firm can immediately produce and sell output to

the customer. This instantaneous time-to-build assumption is standard in the real

option literature (e.g., Dixit (1992) and Pindyck (1993)).

Model 2: Time-to-build. There is a one period interval between investing and

receiving the project’s first revenue. This captures the time required to convert the

input into an output stream (e.g., construction) before entering the product market.

2.1.1 Analysis of Model 1

We start by analyzing how an increase in upstream uncertainty (σs) and down-

stream uncertainty (σc) each affect a firm’s decision to invest under Model 1. Be-

low, Pc(V G), Pc(G), Pc(B), Pc(V B) denote the future output prices if “very good,”

“good,” “bad,” and “very bad” news materializes, respectively, and the subscripts of

each NPV denote the project’s NPV given a realization of the future output price.

If the firm decides to invest at time 0, then the firm will operate the project

indefinitely, unless “very bad” news arrive at time 1 and the project is abandoned.
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Alternatively, if the firm decides to wait, it will only exercise the option at time 1

if (1) Pc(G) materializes and the input price has decreased; (2) Pc(V G) materializes

and the input price has decreased; or (3) Pc(V G) materializes and the input price has

increased. Each of these three cases occurs with probability 1
8
.

For the purpose of brevity, we relegate the complete expressions for the NPV

of investing now, denoted NPV Model 1
0 , and the expected NPV of waiting, denoted

E0[NPV
Model 1
1 ], to Section OA.1 of the Online Appendix. Below, we present the net

benefit of waiting under Model 1, E0[NPV
Model 1
1 ]−NPV Model 1

0 :

NetBenefit(Wait, Model 1) =

(
−1

4
NPV0[Pc(B)] −

1

4
NPV0[Pc(V B)]

)
︸ ︷︷ ︸

(I)

+ (
1

2
− 3

8
β)Ps +

1

8
βσs︸ ︷︷ ︸

(II)

−1

2
(Pc − ω)︸ ︷︷ ︸
(III)

−1

8

β

1− β
(Pc + σc − ω)︸ ︷︷ ︸
(IV)

. (1)

Terms (I) and (II) capture the benefits of waiting, while terms (III) and (IV) capture

the opportunity costs of waiting. We outline the intuition underlying each term below.

Term (I) is the benefit of waiting to avoid bad news about Pc following the “bad

news principle” (Bernanke, 1983). If the output price Pc increases at time 1, the firm

will exercise the option (provided Ps does not rise in the Pc(G) case) and earn the

same revenue had it exercised the option at time 0. In these cases, there is no benefit

from waiting. However, if Pc falls under the Pc(V B) and Pc(B) cases, then the option

will not be exercised at time 1. By waiting, the firm avoids the net loss of investing in

an ex-post uneconomical project. Higher σc increases the potential loss from investing

in the project immediately, as NPV0[Pc(B)] falls with σc. This implies that the benefit

of waiting, captured by this term, increases in downstream uncertainty σc.

Similar to downstream uncertainty, upstream (input price) uncertainty creates

a benefit of waiting for new information. Mechanically, term (II) is the difference

between the input cost under the three positive NPV cases at time 1, and the input

cost under the two ex-post positive NPV cases at time 0 (i.e., if Pc(G) or Pc(V G)

materializes). Economically, this term captures the benefit of waiting to learn that

the input price has fallen in the cases in which “good” news about the output price
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is realized and the project is still viable at time 1.12 This is a “good news principle,”

associated with upstream uncertainty, as the benefit of waiting increases in σs.

Term (III) is the main opportunity cost of waiting, and captures the forgone

revenue during the inaction period if Pc(G) or Pc(V G) arise and the project is viable

ex post. Without time-to-build the firm can both invest and enter the product market

at time 0, so the forgone profit from inaction is the time-0 revenue. Thus, this

opportunity cost of waiting is not stochastic, and is independent of both σc and σs.

Finally, term (IV) is another cost of waiting that arises due to input price (up-

stream) uncertainty. This term captures the potential loss of the future revenue

stream in the case that the input price increases at time 1, but the output price

increases by a smaller amount in the Pc(G) case. By assumption, σs is sufficiently

large so that the project has negative NPV if Ps,1 is equal to Ps + σs, and Pc,1 is

equal to Pc + σc. In this scenario, a waiting firm forgoes the positive profits it could

have earned had it invested at time 0 (before Ps increased), and learned the “good”

news regarding the output price. This term is independent of σs, but increases in σc.

Importantly, without the input price uncertainty, this term would not exist.

Overall, upstream uncertainty has an unambiguous effect on investment: High σs

delays investment at time 0 because the benefit of waiting increases in σs (term (II)),

while the opportunity cost is independent of σs (terms (III) and (IV)). In contrast,

downstream uncertainty has a more subtle effect on investment in the presence of

upstream uncertainty. This is because the benefit of waiting increases in σc (term

(I)), but the opportunity cost of waiting also depends on σc, provided σs is sufficiently

large (term (IV)). This creates some asymmetry between the effects of upstream and

downstream uncertainty. However, without time-to-build, more downstream uncer-

tainty also suppresses investment. To see this, we collect the coefficients of σc in terms

(I) and (IV) and obtain 1
8

β
1−βσc. Thus, the net benefit of waiting increases in σc.

2.1.2 Analysis of Model 2

The analysis of Model 2 is almost identical to that of Model 1. The key difference

is that if the firm invests at time 0, then the first revenue is only received at time 1.

Similarly, if the firm chooses to wait, and exercises its growth option at time 1, then

12If “very good” news about the output price is realized, then there is no benefit in waiting for
the price to drop. This is because the project is viable regardless of the input price.
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its first revenue is only received at time 2. Consequently, the net benefit of waiting

under Model 2 has a similar form and intuition to that from Model 1:

NetBenefit(Wait,Model 2) =

(
−1

4
NPV0[Pc(B)] −

1

4
NPV0[Pc(V B)]

)
︸ ︷︷ ︸

(I)

+ (
1

2
− 3

8
β)Ps +

1

8
βσs︸ ︷︷ ︸

(II)

−1

4
β(Pc + hσc − ω)− 1

4
β(Pc + σc − ω)︸ ︷︷ ︸

(III)

−1

8

β2

1− β
(Pc + σc − ω)︸ ︷︷ ︸
(IV)

. (2)

For the purpose of brevity, we once again present the expressions for the NPV of

exercising the option to invest now, denoted NPV Model 2
0 , and the NPV of delaying the

option to invest, denoted E0[NPV
Model 2
1 ], in Section OA.1 of the Online Appendix.

Here, term (I) (term (II)) captures the benefit of waiting due to a “bad” (“good”)

news principle about the output (input) price. As explained in Section 2.1.1, these

benefits rise with σc and σs, respectively. Term (IV) hinges on σs > 0 and, as in

equation (1), captures the opportunity of cost of not investing at time 0. By not

investing at time 0, and then learning that the input price has increased to Ps + σs

while the input price has increased to Pc + σc in the Pc(G) case, the project has an

ex-post negative NPV and the firm loses the future positive revenue stream.

The key difference between equations (1) and (2) is related to term (III). This

term captures an opportunity cost of waiting, and represents any forgone profits from

inaction. In Model 1, the firm started generating revenues immediately, meaning

that these foregone profits arose at time 0 and were non-stochastic. In Model 2,

the forgone revenues from waiting are materialized at time 1 after the time-to-build

period ends. As such, these foregone profits become a stochastic function of the

output price at time 1, but do not depend on the input price. Moreover, the forgone

profits are capped from below by the abandonment option. This means that these

forgone profits are a convex function of Pc,1, and therefore increase with σc. We refer

to this as the “good news” principle associated with downstream uncertainty.

Similar to Model 1, upstream uncertainty unambiguously delays investment by

raising the benefit of waiting without affecting the opportunity cost. To understand

the impact of downstream uncertainty, we collect the terms in equation (2) that
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depend on σc, and differentiate this expression with respect to σc:
13

∂NetBenefit(Wait, Model 2)

∂σc
= −1

4
βh+

1

8

β2

1− β

The firm term above is negative due to the forgone profits over the inaction period,

and the second term is positive due to the “bad” news principle. Importantly, the net

benefit of waiting can decrease in σc if h > β
2(1−β) . Intuitively, if h is sufficiently large,

then the forgone profits in the Pc(V G) case dominate the benefits of waiting. This

makes the firm hasten its investment in the face of more downstream uncertainty.

We conclude with two key observations. First, unlike Model 1, in which both

σs and σc suppress investment, the time-to-build in Model 2 reduces the benefits of

waiting to resolve output price uncertainty. Therefore, there is an intrinsic asymmetry

between the uncertainties. Upstream uncertainty should induce a negative effect on

investment, while downstream uncertainty’s effect is either weaker or even positive.

Second, while the time-to-build period is strictly one period in this simplified discrete-

time model, the parameter h captures the effect of longer-time-to-build in reduced

form. With a longer investment lag (higher h), very good news can be more extreme.

Thus, we expect downstream uncertainty to boost investment for longer time-to-build

projects. We formalize this intuition in the continuous-time model below.

2.2 Dynamic and stochastic model

We consider a dynamic and stochastic version of the model with time-to-build

from Section 2.1 to show that the asymmetry between upstream and downstream

uncertainty is not an artifact of any simplifying assumption. The setup builds on the

key ingredients of Kydland and Prescott (1982) and Bar-Ilan and Strange (1996), but

deviates by introducing (i) a distinction between assets in place and growth option, (ii)

heterogeneity between the customers and suppliers, and (iii) two types of uncertainty

(i.e., upstream and downstream uncertainty).

2.2.1 Model setup

Time is continuous, and the firm has k0 units of assets-in-place and a production

technology that is linear in capital. Each unit of capital produces one units of output

13The relevant parts of terms (I), (III), and (IV) are − 1
4βhσc −

1
4βσc + 1

4
β

1−βσc −
1
8
β2

1−βσc.
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per unit of time. The output good is then sold to the firm’s customer c for a price

Pc,t. The firm is also endowed with a growth option. This growth option provides

an opportunity to increase the productive capacity by purchasing kg units of input

(capital) from the supplier s. Thus, to exercise the option, the firm needs to invest

an Ps,t · kg, where Ps,t is the price of the input paid to the supplier s.

We assume that the output price fluctuates with customer demand and evolves as

dPc,t
Pc,t

= µcdt+ σcdWc,t,

where {Wc,t} is a standard Wiener process. The input price Ps,t evolves as a contin-

uous Markov chain with states {Ps,H , Ps,M , Ps,L} and transitions over dt given by
1− (λ1 + λ2)dt λ1dt λ2dt

λ1+λ2
2

dt 1− (λ1 + λ2)dt
λ1+λ2

2
dt

λ2dt λ1dt 1− (λ1 + λ2)dt

 .
The three possible values of Ps are Ps,H = 1 + σs, Ps,M = 1, and Ps,L = 1 − σs. By

construction, the unconditional input price from the supplier is normalized to one

(without loss of generality). The volatility of dPs,t is higher whenever σs is higher.

Lastly, we assume that Ps,0 = Ps,M , so the input price from the supplier starts at its

steady-state value. Future profits are discounted at a rate ρ > µc.

Upon exercising the growth option, the firm immediately pays the cost of the input

to the supplier. The input is then converted into a production line that produces final

output after h > 0 periods of time-to-build. That is, if investment is made at time

t, the new capital kg only becomes productive at time t+ h. Once the time-to-build

period is completed, the firm is endowed with k0 +kg units of productive capital. The

technology remains linear in capital, resulting in a flow of k0 + kg units of output per

unit of time, and a revenue stream of Pc,t(k0 + kg) per unit of time. The marginal

labor cost of production under an active growth option is ω. One unit of output

requires one unit of labor, suggesting the labor cost is ω(k0 + kg).

If the investment option is exercised at time t, the firm must commit to the build-

up stage of the project. However, the firm can choose to abandon its investment

project for a cost a ≥ 0 at any time τ after the time-to-build period is over, when
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τ ≥ t + h. Upon abandonment, the firm’s capital reverts to the original assets-in-

place k0. For tractability, and without loss of generality, the price of the capital input

also reverts to its initial level Ps,0. After abandonment, the firm retains the option

to re-activate the investment project in the futureyby purchasing the required inputs

from its supplier at the future re-entry time τ ′ ≥ τ , for a cost Ps,τ ′kg.

2.2.2 Numerical illustration

The model’s solution is outlined in Appendix OA.2. We conjecture, and then

verify, that prior to the adoption of the growth option, the firm’s value is

V0(Pc,t, Ps,t) = B1(Ps,t) · (Pc,t)β1 +B2(Ps,t) · (Pc,t)β2 +B3(Ps,t) · (Pc,t)β3︸ ︷︷ ︸
Growth option value

+
Pc,tk0
ρ− µc︸ ︷︷ ︸

Assets in place value

.

Here, β1, β2, β3 are positive scalars, and Bi(Ps,t) for i = 1, 2, 3 are scalars that depend

on the input price Ps,t. The investment policy is then given by thresholds ξ(Ps) that

depend on the input price Ps. It is optimal to exercise the growth option at time t

when Ps,t ∈ {Ps,L, Ps,M , Ps,H} if and only if Pc,t ≥ ξ(Ps,t). These optimal investment

thresholds cannot be solved in closed form, but can be obtained numerically.

We illustrate the effects of each uncertainty on investment by obtaining the op-

timal thresholds with the following parameter values. The annual real interest ρ is

2.5%, the average annual appreciation of the output price µc is 2%, and the marginal

cost of labor is set to ω = 0.5. We normalize assets-in-place to k0 = 1, and set kg = 1

so that exercising the growth option doubles the firm’s capital. Lastly, the Markov

chain that governs the dynamics of the input prices evolves with λ1 = 1
3

and λ2 = 1
6
.14

Given the parameters above, we consider the optimal investment thresholds for all

combinations of σs ∈ {0.02, 0.03, 0.04, 0.05} and σc ∈ {0.02, 0.03, 0.04, 0.05}. More-

over, beyond allowing upstream and downstream uncertainty to take on a wide range

of values, we also consider two cases for the length of the time-to-build period. Specif-

ically, we consider the investment thresholds under both a long (short) time-to-build

period in which h is set equal to eight (one) periods. Table 1 reports the steady-state

investment thresholds for each case (i.e., ξ when Ps = Ps,M = Ps,0).

14Without loss of generality, we assume a = 0 in the remainder of the analysis. Abandonment is
still effectively costly, because re-entry requires an additional cost.
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Table 1: Optimal investment thresholds under supply-chain uncertainties
The table reports the optimal investment thresholds from the continuous-time model of Section 2.2.
Specifically, the table reports the critical value of the output price Pc,t required to induce the firm
to exercise its growth option given (i) the degree of upstream uncertainty (σs), (ii) the degree of
downstream uncertainty (σc), and (iii) the length of the time-to-build period (h). In each panel of
the table σs and σs can each take on values in the set {0.02,0.03,0.04,0.05}. In Panel A (Panel B)
the length of the time-to-build period is set to eight (one) periods.

(a) Time-to-build stage of h = 8 periods

PPPPPPσc
σs 0.020 0.030 0.040 0.050

0.020 0.9872 0.9908 0.9960 1.0031
0.030 0.9797 0.9843 0.9912 1.0007
0.040 0.9693 0.9745 0.9825 0.9940
0.050 0.9586 0.9642 0.9729 0.9856

(b) Time-to-build stage of h = 1 periods

PPPPPPσc
σs 0.020 0.030 0.040 0.050

0.020 1.2471 1.2473 1.2475 1.2478
0.030 1.2974 1.2975 1.2977 1.2980
0.040 1.3375 1.3377 1.3379 1.3381
0.050 1.3716 1.3718 1.3720 1.3722

Table 1 shows that controlling for σc, upstream uncertainty increases the invest-

ment threshold ξ regardless of h. This shows that, all else equal, upstream uncertainty

delays investment. The result is consistent with the simple model in Section 2.1: de-

laying investment when σs increases is optimal because of a “good news” principle.

Waiting entails the benefit of learning that the input price has fallen.

Panel A shows that controlling for σs, higher downstream uncertainty (σc) can

lower the investment threshold. Thus, unlike σs, σc can hasten investment. Consis-

tent with Section 2.1.2, this occurs for two reasons related to a “good news” principle.

First, the opportunity cost of waiting increases in σc because the forgone profits over

the inaction period are a convex and stochastic function of the output price. These

foregone profits can become more extreme with higher σc, while the downside is

capped by the abandonment option. Second, input price uncertainty can make the

project uneconomical in the future, even if the output price appreciates. The poten-

tial loss of a positive revenue stream from waiting, and then learning that the input

price has increased, becomes larger with higher σc.

However, downstream uncertainty only hastens investment if the time-to-build

period is large enough. Panel B shows that when h = 1, the investment threshold

increases with downstream uncertainty, similar to the effect of upstream uncertainty.

Intuitively, if time-to-build is short, then the opportunity cost of missing out on

profits during the build time cannot become too extreme. This allows the benefit of

waiting – avoiding learning bad news about the output price – to dominate. Thus,
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the analysis in Sections 2.1 and 2.2 generates the following hypotheses.

Hypothesis (i). The association between upstream (supplier-level) uncertainty

and investment is unambiguously negative.

Hypothesis (ii). The association between downstream (customer-level) uncer-

tainty and investment is weaker in absolute value, but can even be positive.

Below, we confirm these conjectures using micro- and macro-level data.

3 Micro-level evidence

We use granular and dynamic data on supplier-customer relationships to provide

novel empirical evidence that is consistent with the model from Section 2. We find

that (i) the association between upstream (i.e., supplier-level) uncertainty and in-

vestment, sales, and stock price is negative and statistically significant, while (ii) the

association between downstream (i.e., customer-level) uncertainty and investment is

either statistically insignificant, or positive and significant. We describe the construc-

tion of the firm-level upstream and downstream uncertainty measures in Section 3.1.

Using these measures, Sections 3.2 and 3.3 document the asymmetry between the

two uncertainties for firms’ investment rates and valuations. We also show that, in

line with the model, the positive effects of downstream uncertainty are concentrated

among firms that have longer time-to-build (Section 3.4), and greater investment re-

versibility (Section 3.5). We establish the robustness of the asymmetric impact of the

two uncertainties for other firm-level outcome variables in Section 3.6.

3.1 Data

Sample. Our sample includes all firms in the CRSP/Compustat universe listed on

the NYSE/AMEX/NASDAQ exchanges, excluding financial firms (SIC 6000 - 6999),

public utilities (SIC 4900 - 4999), and firms belonging to the healthcare industry

according to the Fama and French 10 industry group classification. We exclude

these firms since their supply-chain environments are significantly different from those

underlying our production model. The firm-level analyses range from 1976 to 2018

due to the availability of granular data on inter-firm relationships.

Identifying customers and suppliers. We construct the upstream and down-

stream uncertainties by dynamically identifying the sets of firms that supply to (i.e.,

are upstream from) and buy from (i.e., are downstream from) each firm in our sample.
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To this end, we employ two datasets on supplier-customer relationships: Compustat

Segments and the FactSet Revere Relationship database. By combining these sources

we overcome the limitations associated with each specific dataset, and produce a

comprehensive network that spans the longest time period possible.15

We combine both datasets to construct our panel of inter-firm links between 1976

and 2018 as follows. First, for firm-year observations between June 2003 and June

2018, we start by looking for each firm’s suppliers and customers in the FactSet data.

By using FactSet data in the first step, we obtain the most comprehensive coverage of

firms’ supplier-customer relationships for the most recent part of our sample period.

Next, for the years prior to 2003 (when FactSet is unavailable), we obtain firms’

suppliers and customers from the Compustat Segment database. Importantly, using

FactSet data for the period in which the two data sources overlap ensures that we

capture the union of both datasets, because the links reported in the Compustat

Segment data are a subset of those reported in the FactSet data.

Measuring uncertainty. The model in Section 2 assumes that uncertainty

exists over some economic fundamentals of suppliers, zs, and customers, zc. Market

clearing immediately yields that V ar[zs,t+1] (V ar[zc,t+1]) is positively related to input

(output) price uncertainty. While granular data on relative prices is unobservable

(at least at high-frequency), V ar[zs,t+1] (V ar[zc,t+1]) is directly related to uncertainty

over suppliers’ (customers’) valuations in equilibrium. This is becuase changes in firm

valuations reflect changes in fundamentals, implying that relative input (output) price

uncertainty is positively correlated with the return volatility of supplier (customer)

firms. We verify this assumption in Online Appendix OA.5 using the NBER-CES

database. The average correlation between input price uncertainty and supplier return

volatility is positive and significant (about 0.3). We obtain a similar result for the

correlation between output price uncertainty and customer return volatility.

We construct our baseline measures of uncertainty as follows. First, for each firm-

year observation between June 1976 and June 2018, we identify the customers and

15On the one hand, Compustat Segments data contains considerably fewer links between firms
than FactSet. This is because firms are only required to disclose relationships with customers that
account for at least 10% of total sales at the annual frequency. However, the Compustat data is
available for an extended time period, starting in 1976. On the other hand, FactSet contains around
ten times as many links as Segments, as inter-firm relationships in FactSet are obtained using
comprehensive data from accounting statements, press releases, interviews, and firms’ websites,
among other sources. However, this FactSet data is only available from 2003 to 2018.
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suppliers associated with firm i in year t, as described above. Second, for each supplier

(customer) firm linked to firm i, we use CRSP daily data to compute the volatility

of the supplier’s (customer’s) daily stock returns in the year preceding time t.16 We

then compute the average stock return volatility across all suppliers (customers) that

trade with firm i at time t, and refer to this average as the upstream (downstream)

uncertainty of firm i. Finally, we control for firm i’s own inherent uncertainty (i.e., the

uncertainty that is potentially unrelated to the firm’s trading partners) by computing

the realized daily stock return volatility of the firm over the past year.

Importantly, while the above measures of uncertainty are backwards looking by

construction, the fact that we define uncertainty using variation in realized rather

than expected stock returns does not drive our results. First, since the time series

of uncertainty measures are typically highly persistent, ex-post volatility is highly

correlated with ex-ante uncertainty, but does not rely on parametric assumptions.

Second, for robustness, we repeat our analyses using forward-looking measures of

uncertainty extracted from option prices (discussed and reported in Section 3.6).

Since using option price data significantly truncates both the time-series and cross-

sectional dimensions of our analyses,17 yet deliver consistent results to those obtained

using realized volatility, we base our benchmark results on realized volatility.

3.2 Firm-level investment under supply-chain uncertainty

We verify the predictions of the real-option model. We find that upstream and

downstream uncertainty have (i) independent interaction with firms’ decisions to in-

vest, beyond a firm’s own uncertainty, and (ii) an asymmetric effect on firms’ invest-

ment. Upstream (downstream) uncertainty suppresses (never depresses; potentially

raises) investment. We document these effects via a panel regression:

yi,t = αi + δt + β1σ(Own)i,t + β2σ(Upstream)i,t + β3σ(Downstream)i,t

+ ν ′Ni,t + γ ′Zi,t + εi,t. (3)

16We calculate these stock return volatilities by (i) adjusting returns for delisting events, and (ii)
requiring that each firm has at least 200 non-missing daily stock returns over the previous year.

17There are two costs of using the forward-looking measure of uncertainty extracted from options
prices. First, the sample period is significantly truncated, as OptionMetrics only begins reporting
option price data in January 1996. Second, the use of option-implied volatility places significantly
more restrictive filters on the sample. A firm will only enter the sample if (i) it has options written
on its stock, and (ii) its customers and suppliers also have options written on their stocks.

21



Here, yi,t is the investment rate of firm i at time t, defined in accordance with Belo,

Lin, and Bazdresch (2014), αi is a firm fixed effect, and δt is a time fixed effect that

subsumes common shocks to all firms in a given time period (e.g., the Great Reces-

sion). Our key variables of interest are σ(Upstream)i,t and σ(Downstream)i,t. These

variables denote the uncertainty of firm i’s suppliers (upstream uncertainty) and the

uncertainty of firm i’s customers (downstream uncertainty) at time t, respectively.

σ(Own)i,t denotes the firm i’s own uncertainty at time t, and is an economically im-

portant control. For tractability, the models in Section 2 assume that σ(Upstream)i,t

and σ(Downstream)i,t are orthogonal. In reality, however, both uncertainties can

be correlated, as fundamental shocks that are specific to firm i’s own uncertainty

can simultaneously propagate up- and downstream, and impact both the firm’s up-

stream (input price) uncertainty and downstream (output price) uncertainty. Includ-

ing σ(Own)i,t in equation (3) accounts for any common shocks to σ(Downstream)i,t

and σ(Upstream)i,t that originate from their common trading partner: firm i.

In the regression above, Ni,t is a vector that includes the numbers of suppliers and

customers linked to firm i in year t. The number of suppliers (customers) is included as

a control variable in all regressions that feature upstream (downstream) uncertainty.

Zi,t is a vector of time-varying firm-level controls that contains the book-to-market

ratio, stock return momentum, financial constraints index, profitability, and Tobin’s

q. These variables capture relevant aspects of a firm’s economic environment, other

than uncertainty, that can influence its decision to invest. Details on the construction

of each variable are provided in Section OA.3 of the Online Appendix.

Panel A of Table 2 reports the results of estimating equation (3). In Table 2, and

all following firm-level results, we scale each independent variable by its unconditional

standard deviation to aid interpretation, and cluster standard errors at the firm level.

In all projections, observations are measured in June (i.e., time t refers to June of the

given year) to ensure that accounting data are publicly available for all firms.

Columns one and two of the table show that, before accounting for the supply-

chain uncertainties, higher firm-level uncertainty is associated with a decrease in

investment. Specifically, without the additional controlsZi,t, a one standard deviation

in a firm’s own uncertainty is associated with a statistically significant decrease in

its investment rate by 0.13. This result is consistent with the wide-held notion that
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Table 2: Firm-level investment and valuation under supply-chain uncertainties
The table reports the relation between a firm’s investment rate (Panel A) or price-to-earnings ratio
(Panel B) and the contemporaneous level of the firm’s upstream uncertainty (uncertainty of the firm’s
suppliers), the firm’s downstream uncertainty (uncertainty of the firm’s customers), and the firm’s
own uncertainty. The results are based on estimating regression (3), where yi,t is firm i’s investment
rate or price-to-earnings ratio obtained from the most recent annual report as measured at time
t. The benchmark upstream and downstream uncertainty are constructed at time t following the
procedure outlined in Section 3.1. In all specifications we include firm and year fixed effects. In all
specifications that feature upstream (downstream) uncertainty we control for the number suppliers
(customers) of each firm. In even column we include additional control variables including book-to-
market ratio, stock return momentum, financial constraints index, profitability, and Tobin’s q. The
definitions of all variables are provided in Section OA.3.1 of the Internet Appendix. All regressions
are estimated using a panel of firm-year observations ranging from 1976 to 2018. t-statistics reported
in parentheses are based on standard errors that are clustered at the firm level.

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Investment rates

σ(Own) -0.13 -0.06 -0.09 -0.08 -0.08 -0.07 -0.06 -0.01
(-19.31) (-8.56) (-6.11) (-5.42) (-3.80) (-3.20) (-3.51) (-0.71)

σ(Upstream) -0.03 -0.03 -0.02 -0.02
(-3.35) (-3.53) (-1.78) (-1.98)

σ(Downstream) 0.03 0.03 -0.00 -0.01
(4.00) (3.18) (-0.36) (-0.64)

Adj.-R2 0.33 0.37 0.50 0.51 0.40 0.41 0.48 0.52
Obs. 160829 149102 18794 17703 32253 30392 12164 11531

Panel B: Valuation ratios
σ(Own) -0.06 -0.04 -0.05 -0.05 -0.04 -0.05 -0.02 -0.00

(-12.04) (-5.84) (-3.07) (-3.01) (-3.97) (-3.87) (-0.99) (-0.16)
σ(Upstream) -0.02 -0.02 -0.03 -0.03

(-2.01) (-1.96) (-2.28) (-1.90)
σ(Downstream) 0.01 0.01 0.00 -0.00

(1.40) (0.60) (0.17) (-0.35)
Adj.-R2 0.15 0.14 0.15 0.15 0.14 0.14 0.13 0.14
Obs. 1679710 129745 18449 17398 31058 29276 11918 11310

Controls No Yes No Yes No Yes No Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes

uncertainty is negatively related to investment (e.g., Bloom (2009)).

Columns three and four extend the aforementioned analysis by considering the

effect of upstream uncertainty on firms’ investment rates. Upstream uncertainty is

negatively related to investment, beyond the negative impact of the firm’s own un-

certainty. For instance, column four indicates that, conditioning on a firm’s own
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uncertainty and the control variables Zi,t, a one standard deviation increase in up-

stream uncertainty decreases investment rates by an additional 3%. This effect is

significant at better than the 1% level, and consistent with the prediction of the

models in Section 2 regarding the impact of upstream uncertainty.

By contrast, columns five and six show that higher downstream uncertainty is

positively and statistically related to investment. A one standard deviation increase

in downstream uncertainty increases a firm’s investment rate by 3%, controlling for

the firm’s own uncertainty and Zi,t. This positive association between downstream

uncertainty and investment is in line with hypothesis (ii) of the model in Section 2.2.

Finally, columns seven and eight consider the incremental effect of each type of

uncertainty on investment, controlling for all three uncertainties (own, upstream, and

downstream) jointly. The asymmetry between upstream and downstream uncertainty

is still manifested, and consistent with the predictions of the model: (i) Upstream

uncertainty suppresses investment, beyond the effects of the other uncertainties; (ii)

While the effect of downstream uncertainty is no longer positive and statistically

significant, its marginal effect is small in absolute value, and indistinguishable from

zero. Importantly, downstream uncertainty does not dampen investment. Comparing

the results of columns (7) and (8) to those of columns (1) and (2) shows that the

effect of a firm’s own uncertainty on investment is overstated when not controlling for

the supply-chain uncertainties. In Column (8), only the slope coefficient on upstream

uncertainty is statistically significant.

3.3 Firm-level valuation under supply-chain uncertainty

Production-based asset pricing models typically predict that firms’ investment

and stock prices comove (see, e.g., Zhang (2005)). Consistent with the results of Sec-

tion 3.2, and coupled with standard q-theory, we show that the asymmetry between

upstream and downstream uncertainty also applies to firm-level valuation ratios. We

estimate equation (3) after replacing yi,t with firm i’s valuation ratio at time t, mea-

sured using price-to-earnings (see Section OA.3 of the Online Appendix for details).

The results are shown in Panel B of Table 2. Columns one and two show that

without controlling for upstream or downstream uncertainty, an increase in a firm’s

own uncertainty leads to significantly lower valuations. We consider the marginal

effect of upstream (downstream) uncertainty in columns three and four (five and six).
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In line with Panel A, the slope coefficient on upstream (downstream) uncertainty is

negative (positive). While the negative relation between upstream uncertainty and

valuations is statistically significant and sizable around 2%, the positive relation be-

tween downstream uncertainty and valuations is indistinguishable from zero. Finally,

columns seven and eight report the results of horse-race regressions in which all three

uncertainties are included simultaneously. Upstream uncertainty plays the traditional

role of reducing valuations, and crowds out the impact of a firm’s own uncertainty.

In contrast, downstream uncertainty has a non-negative relation to firm value.

3.4 Downstream uncertainty and time-to-build

The model in Section 2.2 predicts that the asymmetry between upstream and

downstream uncertainty is more pronounced for firms facing longer time-to-build.

With enough build time, downstream uncertainty can hasten investment. We verify

this prediction empirically. Using a firm’s sector as a proxy for its time-to-build, we

find that the positive interaction between downstream uncertainty and investment is

almost twice as large for firms with longer time-to-build periods. We test the inter-

action between downstream uncertainty and time-to-build via the panel regression

yi,t = αi + δt + β1σ(Own)i,t + β2σ(Downstream)i,t × I [Long]i,t

+ β3σ(Downstream)i,t × I [Short]i,t + νNc,i,t + γ ′Zi,t + εi,t, (4)

where I [Long]i,t (I [Short]i,t) denotes an indicator variable that takes on a value of one

if firm i is defined as having a long (short) time-to-build at time t, and zero otherwise.

All other variables in equation (4) follow the same definitions as equation (3).18

Since firm-level measures of time-to-build are unobservable, we split our sample

into two groups using an intuitive yet conservative approach that is based on the

sectoral classification of Gomes, Kogan, and Yogo (2009). By and large, perishable

goods involve a shorter construction time than durable goods. Thus, the short time-

to-build group is comprised of firms that belong to industries that produce non-

durable consumption goods or services, while the long time-to-build group includes

18Note that we omitted the term related to upstream uncertainty. We do so because the time-to-
build assumption affects only the opportunity cost of waiting for downstream uncertainty, but not
for upstream uncertainty. Moreover, the model predicts that downstream uncertainty should induce
a non-negative impact on investment, even if upstream uncertainty is fixed or time-varying.
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firms operating in other sectors (e.g., investment-goods or durable consumption goods

producers). We conjecture that β2 is qualitatively and quantitatively larger than β3.

The results for these slope coefficients are reported in Table 3.

Table 3: Investment, supply-chain uncertainties, and time-to-build
The table reports the relation between a firm’s investment rate and the contemporaneous level of the
firm’s downstream uncertainty (uncertainty of the firm’s customers), conditioning on a proxy for the
firm’s time-to-build period based on the sectoral classification of Gomes et al. (2009). The results are
based on estimating regression (4), where yi,t is firm i’s investment rate obtained from the most recent
annual report as measured at time t, the “Short” dummy takes the value of one for firms that produce
perishables (non-durable consumption goods or services), while the “Long” dummy takes the value
of one for firms operating in other sectors (e.g., investment-good producers and durable consumption
goods producers). Downstream uncertainty is constructed at time t following the procedure outlined
in Section 3.1. We include year fixed effects in columns (1)-(4), and firm fixed effects in columns (3)
and (4). We control for each firm’s number customers in all columns, and in columns (2) and (4) we
include each firm’s book-to-market ratio, return momentum, financial constraints index, profitability,
and Tobin’s q as additional control variables. The definitions of all variables are provided in Section
OA.3.1 of the Internet Appendix. t-statistics reported in parentheses are based on standard errors
that are clustered at the firm level. The table also reports the p-value from a Wald test on the null
hypothesis that the relation between downstream uncertainty and investment is the same for both
short and long time-to-build firms (H0 : β2 = β3 in equation (4)).

(1) (2) (3) (4)
σ(Downstream) × Short 0.03 0.02 0.02 0.01

(3.17) (2.04) (1.78) (1.33)
σ(Downstream) × Long 0.08 0.05 0.04 0.03

(7.55) (4.60) (4.05) (2.56)

F(Long=Short) 22.02 6.52 3.87 1.06
p(Long=Short) 0.00 0.01 0.05 0.30
Controls No Yes No Yes
Firm FE No No Yes Yes
Year FE Yes Yes Yes Yes
Adj.-R2 0.04 0.16 0.40 0.44
Obs. 33351 31485 32253 30392

Columns one and two report the results without firm fixed effects. While an in-

crease in downstream uncertainty is associated with higher investment rates among

all firms, the effect of downstream uncertainty on investment is over twice as large

in magnitude for the long time-to-build group. For example, column one (two) esti-

mates equation (4) without (with) additional controls and shows that a one standard

deviation increase in downstream uncertainty increases investment rates by 8% (5%)
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among firms with long time-to-build. In contrast, downstream uncertainty only in-

creases investment by 3% (2%) among firms with short time-to-build.

The fact that downstream uncertainty induces a more positive effect on investment

for long time-to-build firms is qualitatively unchanged when we include firm fixed

effects. Column three (four) shows that without (with) additional controls, a one

standard deviation increase in downstream uncertainty is associated with 4% (3%)

increase in investment for long time-to-build firms, and β2 is statistically significant.

For short time-to-build firms, downstream uncertainty increases investment by only

2% (1%), and β3 is indistinguishable from zero. Relatedly, a Wald test on the null

hypothesis that β2 = β3 is rejected at 5% level or better in most columns.

3.5 Supply-chain uncertainty and investment reversibility

A key ingredient of the models in Section 2 is that the firm holds an option to

abandon the project in “very bad” states of the world. The cost of exercising this

abandonment option controls the project’s reversibility, and has a direct impact on

the net benefit of waiting to invest if either upstream or downstream uncertainty rise.

On the one hand, if the abandonment cost is sufficiently large, then abandoning

the project in the “very bad” state may no longer be possible. This makes the

investment irreversible. In this case, higher upstream uncertainty magnifies the “bad

news” principal, as waiting allows the firm to avoid losses in both the “bad” and “very

bad” states of the world. These losses intensify with more upstream uncertainty, so

the benefit of waiting following an upstream uncertainty shock is larger when the

abandonment cost is higher. On the other hand, if the abandonment cost is sufficiently

low, then abandoning the project in the “bad” state becomes possible. This magnifies

the “good news” principle associated with downstream uncertainty. By not investing

immediately, the firm forgoes the next period’s truncated profit, which only rises with

more downstream uncertainty. As such, the cost of waiting following a downstream

uncertainty shock is larger when the abandonment cost is lower.

To check these predictions of the model, we split the effects of up- and downstream

uncertainty across firms with high and low investment reversibility. Specifically, we

estimate projections that are similar to equation (4), but interact each supply-chain

uncertainty of interest with an indicator that classifies each firm as facing high or low

reversibility. We use the asset redeployability measure of Kim and Kung (2017) as
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our proxy of reversibility. Firms with a below-median value of redeployability have

less reversibility, corresponding to a higher abandonment cost.

The results in Table OA.6.2 of the Online Appendix confirm both predictions.

First, upstream uncertainty is more negatively associated with investment for firms

with harder-to-abandon projects. Second, downstream uncertainty has a more posi-

tive effect on the investment rates of firms with easier-to-reverse investment projects.

3.6 Robustness of firm-level results

Our firm-level results for investment and valuation under supply-chain uncer-

tainty are robust to using: (1) alternative uncertainty measures (e.g., forward-looking

option-implied volatility); (2) other firm-level outcomes beyond investment rates, such

as real sales and inventory growth; and (3) an alternative subsample period.

For instance, since the models in Section 2 motivate the empirical analysis, the

models are primarily concerned with the effects of up- and downstream uncertainties

on firms’ investment rates. Since investment is correlated with other firm outcomes,

we extend the empirical analysis to consider the interaction between the supply-chain

uncertainties and related firm-level outcomes. Table OA.6.1 examines how upstream

and downstream uncertainty affect firms’ real sales and inventory growth rates. In

line with the results for investment, upstream and downstream uncertainty have an

asymmetric impact on each outcome. An increase in upstream uncertainty is associ-

ated with reductions of both sales and inventory growth rates, whereas downstream

uncertainty either induces a positive or a zero effect on these growth rates. We report

other robustness checks in Section OA.6 of the Online Appendix.

4 Macro-level evidence

This section shows that the micro-level results documented in Section 3 also hold

at the macro-level. That is, the asymmetric response of firm-level investment and

valuations to changes in upstream and downstream uncertainty carries over to the

macroeconomy. Intuitively, since supplier-specific (customer-specific) uncertainty is

associated with decreased (increased) economic activity, common uncertainty shocks

to firms that tend to operate relatively upstream (downstream) should induce a pos-

itive (negative) effect on most other firms, as most links in the production network

point downstream. We construct macro-level measures of supply-chain uncertainty

28



in Section 4.1. Section 4.2 then shows that shocks to macro-level upstream (down-

stream) uncertainty lead to a deterioration (improvement) in aggregate growth and

asset prices. Moreover, Section 4.3 demonstrates that macro-level upstream (down-

stream) uncertainty is associated with higher (lower) marginal utility of investors.

4.1 Data

Our macro-level analysis uses the same universe of firms described in Section

3.1. Unlike our firm-level tests that begin in 1976, our macro-level results begin in

1974. We choose this slightly earlier start date since we can compute the macro-level

measures of supply-chain uncertainty over a longer time period, as described below.19

Constructing vertical position. The macro-level analysis of supply-chain un-

certainties requires to move beyond the “upstream” and “downstream” metrics used

in Section 3, due to the need to consider the absolute vertical position of each firm in

the production network, rather than the relative position of a firm in a given supply

chain.20 To see why, consider a firm i that has a high vertical position (i.e., is further

from final consumers). In the firm-level analysis, it was sufficient to define any sup-

plier firm s that sells to firm i as an upstream firm with respect to i. However, firm s

is not necessarily more upstream than firm i in an absolute sense. For example, while

s may sell some of its output to i, firm s may sell most of its goods to final consumers.

Therefore, while firm s is relatively upstream from the perspective of firm i (i.e., in

a specific supply chain), firm s may still have a lower absolute vertical position when

considering the production network as a whole.

We measure the vertical position of firms in the production network using the

Input-Output (I-O) tables constructed by the Bureau of Economic Analysis (BEA).

These tables, which are also referred to as the BEA’s Make and Use tables, record the

dollar flows of commodities between industries, and their usage for final consumption.

There are two primary benefits of using the BEA I-O tables rather than Compustant

Segments or FactSet data to measure absolute vertical position. First, the I-O tables

span a significantly longer time period than either alternative dataset, allowing us to

19While this slightly earlier start date allows us to begin the sample period around the time that
NASDAQ-listed firms appear in CRSP, this start date does not influence our macro-level results.

20Following Gofman et al. (2020), we use the term “vertical position” or “upstreamness” to denote
the distance of a firm from final consumption good production.
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measure the vertical positions of firms as far back as the 1970s.21 Second, the I-O

tables account for the existence and the importance of inter-industry links, as they

record the dollar flows of goods between different parts of the economy.22 Nonetheless,

the I-O tables are only published once every five years.

The intuition behind the vertical position measure based on the BEA’s Make and

Use tables is that industries that produce a higher (lower) dollar value of commodities

that flow to final consumers are less (more) upstream in the production network. With

this intuition in mind, we follow Antràs and Chor (2018) to combine the normalized

Make and Use tables, denoted by M̃ and Ũ , respectively, to compute a vertical

position (upstreamness) score for each industry. Specifically, the upstreamness score

of industry k at time t is the kth element of

V Pt =
(
INt×Nt − M̃Nt×Ct × ŨCt×Nt

)−1
ι. (5)

Here, V Pt is a Nt × 1 vector of vertical position scores, I is an identity matrix, ι is a

vector of ones, and the subscripts Nt and Ct represent the total number of industries

and commodities in the BEA tables at time t, respectively. The Leontief inverse in

equation (5) captures the importance of each industry as a direct and indirect supplier

to all other industries (Carvalho and Tahbaz-Salehi, 2019).23

We apply the procedure underlying equation (5) to the BEA Make and Use tables

reported for years 2012, 2007, 2002, 1997, 1992, 1987, 1982, and 1977. For obser-

vations preceding (proceeding) 1977 (2012), we assume that an industry’s vertical

position is identical to that in 1977 (2012). For observations between successive re-

leases of the I-O tables, we assume that an industry’s vertical position in year t is the

same as that based on the previously released Make and Use tables. For the purpose

21While Compustat Segments contains a small number of observations for the 1970s, there is an
insufficient number of inter-firm links to compute absolute measures of upstreamness. For instance,
there are only 1087 links in Compustat Segments for the entire 1976 – 1979 period.

22While Compustant Segments data also contains information on the flow of sales between a firm
and its most critical customers, this data is limited to the small set of firms that appear in the
Segments data. Similar data on flows is unavailable for the more comprehensive FactSet dataset.

23The properties of this matrix satisfy the conditions listed in Carvalho and Tahbaz-Salehi (2019)
for this matrix’s inverse to exist. Therefore, defining Tt ≡ M̃Nt×Ct

× ŨCt×Nt
, and noting that

(INt − Tt)
−1

=
∑∞
z=0 T

k
t , we can write element (i, j) of (INt

− Tt)−1 as ti,j +
∑Nt

k=1 ti,ktk,j + . . ..
Here, the first term reflects the importance of industry j as a supplier to industry i, the second term
accounts for links between industry j, and each industry r that, in turn, supplies to industry i, and
the ellipses account for all other indirect links between industry j and industry i.
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of brevity, we provide a detailed description of how we clean, filter, and normalize the

BEA I-O tables, and then match the resulting industry-level vertical position scores

to the CRSP/Compustat universe, in Section OA.4 of the Online Appendix.

Constructing macro-level uncertainties. At the end of each month between

January 1974 and December 2018, we sort firms into two groups based on the cross-

sectional distribution upstreamness scores from equation (5). Firms that belong to

industries with a vertical position score above (below) the 90th (10th) percentile of the

distribution of vertical position scores are considered upstream (downstream) firms.

While these cutoffs may appear relatively extreme, they provide a clear distinction

between firms that are considered upstream and downstream. Furthermore, these

breakpoints produce portfolios that contain hundreds of individual firms.24

To parallel our micro-level measures of upstream- and downstream uncertainty

from Section 3, we construct our baseline measures of macro-level upstream and

downstream uncertainty using the realized volatility of firm-level stock returns. We

compute the realized stock return volatility of each firm assigned to each of the

upstream and downstream portfolios. The volatility of firm i in month t is the stan-

dard deviation of the firm’s daily stock returns in month t.25 We then compute the

value-weighted average realized stock return volatility across all firms in a given port-

folio. This procedure yields a monthly time-series of aggregate uncertainty for both

upstream and downstream firms. Finally, since most macroeconomic variables of in-

terest are recorded at a lower frequency than stock returns, we aggregate the monthly

time series of upstream and downstream uncertainties into quarterly time series. This

is achieved by computing the time-series mean of upstream (downstream) uncertainty

over the three months preceding the end of each quarter t.26

We also ensure that our macro-level results are robust to using forward-looking

measures of uncertainty. For instance, in Section 4.3 we extract the time-t mea-

surable component of future realized stock return volatility. The results based on

24Untabulated analyses show our results are robust to using the 20th and 80th percentiles of the
cross-sectional distribution of vertical position scores to define upstream and downstream firms.

25To compute these measures of volatility we (i) adjust stock returns in CRSP daily for delisting
returns, and (ii) require that each firm has at least 15 valid stock returns in a given month.

26Rather than averaging uncertainty over the three months in a given quarter, an alternative
approach is to define the uncertainty associated with quarter t as the value of uncertainty in the
final month of quarter t. Untabulated analyses show that our results are robust to this alternative
method for converting the monthly measure of uncertainty into a quarterly measure.
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these forward-looking measures are in line with those based on realized stock return

volatility. Moreover, in untabulated robustness checks we also show our results are

materially unchanged when measuring aggregate supply-chain uncertainty using (i)

forward-looking option-implied volatility, and (ii) idiosyncratic stock return volatility.

4.2 Upstream and downstream uncertainty: aggregate IRFs

We show that macro-level upstream (downstream) uncertainty negatively (posi-

tively) affects aggregate growth and asset prices by estimating IRFs that determine

how macro-level uncertainty shocks impact key variables of interest.

The IRFs are estimated using the Smooth Local Projections (SLP) method de-

scribed by Barnichon and Brownlees (2019). Unlike IRFs from the local projection

(LP) method of Jordà (2005), which requires the estimation of separate predictive

regressions for each forecast horizon of interest, SLPs assume that impulse responses

are a smooth function of the forecast horizon. This allows SLPs to strike a bal-

ance between the benefits of IRFs from vector autoregressions, which are efficient

for correctly specified models, and IRFs from LPs, which are more robust to model

misspecification but are potentially noisy.27 Specifically, our IRFs are based on the

following h-step ahead predictive regressions for horizons of h ∈ {1, ..., H} quarters

yt+h = β0(h) + β1(h)yt + β2(h)σU,t + β3(h)σD,t +
P∑
p=1

γ ′p(h)Γt−p + εt+h. (6)

Here, yt+h denotes one of the six following aggregate-level variables at time t+h: the

quarterly real growth rates of industrial production, consumption, private investment,

gross domestic product, the level of the market’s price-dividend ratio, and the risk-

free rate. σU,t (σD,t) denotes macro-level upstream (downstream) uncertainty at time

t, constructed following the procedure in Section 4.1, and Γt−p is a vector of controls

in quarter t − p. These controls include the dependent variable of interest, the two

macro-level supply-chain uncertainties, the excess market return, the term spread,

the default spread, and the inflation rate. These last four variables are included

to account for the negative correlation between the level of macroeconomic activity

and macroeconomic uncertainty. We set P equal to one, but results are also robust

27Barnichon and Brownlees (2019) strike a balance between VARs and LPs by estimating LPs, and
then using penalized B-splines to shrink the resulting IRF towards a smooth polynomial function.

32



to setting P equal to four. Moreover, our results are robust to controlling for the

contemporaneous values of the various controls in Γt. Finally, we standardized all

variables in equation (6) for ease of interpretation and comparability between figures.

Figure 2 (Figure 3) shows the impulse response functions for the six outcome

variables with respect to a one standard deviation increase in macro-level upstream

(downstream) uncertainty. Each figure displays the mean response of each variable

to the given shock (solid lines), alongside the 90% confidence interval (dashed lines).

Figure 2: Impulse responses from macro-level upstream uncertainty shocks
The figure shows impulse response functions (IRF) from a one standard deviation shock to macro-
level upstream uncertainty σU,t to the quarterly growth rates of industrial production, real consump-
tion, real investment, real GDP, and the levels of the aggregate price-dividend ratio and the risk-free
rate. We estimate the IRFs using smooth local projection (Barnichon and Brownlees (2019)) method
of Equation (6) for horizons that range from one to 16 quarters ahead. We measure macro-level
upstream uncertainty by following the procedure described in Section 4.1. Detailed descriptions on
the variables included in equation (6) are provided in Section OA.3.2 of the Online Appendix. The
estimated IRFs are denoted by solid lines, while 90% confidence intervals are represented by the
dashed lines. The sample period ranges from 1974Q1 to 2018Q4.

0 5 10 15

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

The IRFs from macro-level upstream uncertainty to all variables of interest are

negative and significant, as shown in Figure 2. That is, higher upstream uncertainty

leads to a contraction. One quarter after an upstream uncertainty shock, industrial

production and consumption growth drop by approximately 0.25 and 0.15 standard
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Figure 3: Impulse responses from macro-level downstream uncertainty shocks
The figure shows impulse response functions (IRF) from a one standard deviation shock to macro-
level downstream uncertainty σD,t to the quarterly growth rates of industrial production, real con-
sumption, real investment, real GDP, and the levels of the aggregate price-dividend ratio and the
risk-free rate. We estimate the IRFs using smooth local projection (Barnichon and Brownlees (2019))
method of Equation (6) for horizons that range from one to 16 quarters ahead. We measure macro-
level downstream uncertainty by following the procedure described in Section 4.1. Detailed de-
scriptions on the variables included in equation (6) are provided in Section OA.3.2 of the Online
Appendix. The estimated IRFs are denoted by solid lines, while 90% confidence intervals are repre-
sented by the dashed lines. The sample period ranges from 1974Q1 to 2018Q4.
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deviations, respectively. These effects are statistically significant and persist for about

seven quarters ahead. Higher upstream uncertainty also drops the market’s valua-

tion ratio and the risk-free rate. The reduction in the valuation ratio (the risk-free

rate) persists for around 12 (six) quarters. Together, these results echo the firm-level

findings for upstream uncertainty, and are consistent with the traditional negative as-

sociation between uncertainty and economic growth (e.g., Ramey and Ramey (1995)).

In contrast to upstream uncertainty, Figure 3 shows that macro-level downstream

uncertainty shocks have an expansionary impact, leading to higher future real eco-

nomic growth. A one standard deviation shock to macro-level downstream un-

certainty increases one-quarter ahead industrial production growth, consumption

growth, and investment growth by about 0.1 standard deviations. Likewise, the
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market’s price-dividend ratio rises by a similar, and statistically significant, amount

and remains elevated for almost 16 quarters ahead. However, the risk-free rate is

largely unaffected. Overall, the positive impact of downstream uncertainty is even

more pronounced at the macro-level than the firm-level.

Comparing the IRFs in Figures 2 and 3 shows that macro-level upstream and

downstream uncertainty have an asymmetric effect on aggregate variables in terms of

signs and magnitudes. The positive impacts of macro-level downstream uncertainty

shocks are quantitatively more muted, in absolute value, than the negative impacts of

macro-level upstream uncertainty shocks. In general, a one standard deviation shock

to upstream uncertainty leads to responses that are around 50% to 100% larger in

magnitude than the responses to downstream uncertainty shocks. These differences

in the sign and the magnitude of the supply-chain uncertainty shocks are broadly

consistent with the implications of the micro-level models in Section 2.

By jointly controlling for upstream and downstream uncertainty in equation (6),

we isolate the component of downstream uncertainty that is orthogonal to upstream

uncertainty. This orthogonal component is procyclical, reconciling the positive impact

of downstream uncertainty on economic growth. We show this in Section 4.4.28

Robustness. We conduct a host of robustness checks showing that we obtain

similar IRFs when we: (1) use the predictable component of the macro-level uncer-

tainties; (2) use either option-implied volatility or idiosyncratic stock return volatility

to measure uncertainty; (3) include additional lags of control variables (i.e., increasing

P in equation (6)) or estimate the IRFs using the local projection method of Jordà

(2005); or (4) use the 20th and 80th percentiles of the cross-sectional distribution of

vertical position scores to define the sets of upstream and downstream firms. We do

not tabulate these results for the purpose of brevity.

28Untabulated results verify that the asymmetric effects of the two macro-level uncertainties arise
even if we only control for one facet of uncertainty at a time in equation (6). We re-estimate the IRFs
associated with upstream (downstream) uncertainty after removing all contemporaneous and lagged
terms associated with downstream (upstream) uncertainty. While these restricted specifications are
misspecified (Section 4.3 shows that both facets of uncertainty impact marginal utility), the IRFs
based on these restricted regressions deliver a consistent conclusion to the IRFs from the unrestricted
regressions – reported in Figures 2 and 3. Qualitatively, we still obtain negative (insignificant or
positive) impulse responses from upstream (downstream) macro-level uncertainty shocks. Quanti-
tatively, the results of the restricted projections are weaker. By not controlling for the two types of
uncertainty, the impulse responses to downstream uncertainty incorporate the impact of the joint
component between the two uncertainties, as well as the impact of the orthogonal component.
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4.3 Upstream and downstream uncertainty: prices of risk

We show that macro-level upstream (downstream) uncertainty shocks are asso-

ciated with an increase (decrease) in the marginal utility of investors. This finding

is consistent with the former section that shows that macro-level upstream (down-

stream) uncertainty decreases (increases) future consumption growth.

Ex-ante uncertainty. As investors are concerned about variation in expected

outcomes, we compute the market prices of risk of a forward-looking versions of ag-

gregate upstream and downstream uncertainty. Specifically, we consider the time-t

predictable component of each future volatility measure. We extract these ex-ante

(predictable) components by projecting the logarithm of realized volatility of aggre-

gate upstream (downstream) uncertainty at time t+ 1 on a set of time-t predictors:

ln (σx,t+1) = β0 + βΓ′t + εx,t+1 for x ∈ {U,D}, (7)

and define the ex-ante component, denoted by σ̃x,t = exp
(
β̂0 + β̂Γ′t

)
for x ∈ {U,D}.

Taking the logarithm above ensures the ex-ante uncertainty measures are strictly

positive. We estimate these projections at the monthly frequency using data between

January 1974 and December 2018. Our baseline specifications includes the following

control variables in Γt: both upstream and downstream macro-level uncertainty, the

market’s price-dividend ratio, the term and default spreads, and the inflation rate.29

Market prices of risk. We estimate the market prices of risk of the predictable

components of macro-level upstream and downstream uncertainty by assuming that

the stochastic discount factor (SDF) that prices all assets in the economy is:

Mt = 1− bMKTMKTRFt − bU∆σ̃U,t − bD∆σ̃D,t. (8)

The parameter bU (bD) measures the market price of upstream (downstream) un-

29Prior to estimating the market prices of risk associated with ex-ante upstream and downstream
uncertainty measures, we first confirm that the impulse responses from these uncertainties to ag-
gregate variables are consistent with the baseline results of Section 4.2. We replace the quarterly
measures of σU,t and σD,t in equation (6) with the ex-ante measures of upstream and downstream
uncertainty – σ̃U,t and σ̃D,t, respectively. The results, reported in Figures OA.7.2 and OA.7.3 of
the Online Appendix, show that using ex-ante measures of macro-level uncertainties supports the
conclusion that macro-level upstream (downstream) uncertainty is associated with a deterioration
(improvement) in macroeconomic conditions and asset prices.
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certainty, and bMKT reflects the price of risk associated with the market portfolio,

which we proxy using the excess market return from the Fama and French (1993)

three-factor model. We demean all variables included in equation (8), and estimate

[bMKT bU bD]′ via generalized method of moments (GMM) using the Euler condition

E
[
Mtr

e
i,t

]
= 0, where rei,t denotes the excess return of test asset i at time t.

We employ two menus of test assets to estimate the loadings in equation (8): (1)

the monthly returns of 25 value-weighted portfolios double sorted on size and book-

to-market, and (2) following the suggestions of Lewellen, Nagel, and Shanken (2010),

we also estimate the loadings using a set of 42 portfolios that augments the first set

of assets with the monthly value-weighted returns of the Fama-French 17 industry

portfolios. This helps to break the strong factor structure inherent in the returns of

the first set of test assets. In robustness checks discussed below we also show that our

results hold when using even more comprehensive menu comprised of 92 test assets.30

Table 4: Market price of risk of macro-level upstream and downstream uncertainty
The table reports the market prices of risk associated with macro-level upstream and downstream
uncertainty (σU and σD, respectively). We estimate these market prices of risk via a generalized
method of moments procedure based on the stochastic discount factor (SDF) given by equation
(8) and the Euler equation given by E

[
Mtr

e
i,t

]
= 0. When estimating these prices of risk we

use the ex-ante (predictable) components of future macro-level upstream and downstream realized
volatility, obtained via equation (7) at the monthly frequency. We control for excess market returns
as a risk factor, capturing first-moment fluctuations in productivity. We use two different sets of
value-weighted test assets. In Panel A the set of test assets is comprised of the monthly returns
of 25 portfolios sorted on size and book-to-market. In Panel B, the set of test assets in Panel A
is augmented by including the monthly returns of the 17 Fama-French industry portfolios. The t-
statistic associated with each factor risk premium is reported in parentheses, and the mean absolute
error (MAE) from each estimation procedure is reported in the bottom row of each panel. Monthly
data spanning February 1974 to December 2018 is used to estimate each model.

Panel A: 25 portfolios Panel B: 42 portfolios
MKTRF 3.64 2.76 3.85 2.97 3.40 2.79 3.55 3.03

(3.47) (2.40) (3.51) (2.24) (3.30) (2.57) (3.32) (2.66)
σU -0.67 -2.42 -0.46 -1.41

(-2.44) (-3.59) (-2.34) (-3.07)
σD 0.40 4.90 0.28 2.93

(0.70) (3.28) (0.60) (2.73)
MAE 0.98 1.03 0.97 0.93 1.01 1.01 1.00 0.97

30We obtain the monthly returns of all test assets from Ken French’s data library. We thank Ken
French for making this data available.
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Table 4 reports the loading associated with each source of risk included in equa-

tion (8) across the two sets of test assets, and the mean absolute pricing error (MAE)

from each GMM estimation. Panel A is based on the set of 25 test assets. When bD

(bU) is restricted to zero, upstream (downstream) uncertainty has a negative (posi-

tive) and statistically significant (insignificant) price of risk. When both coefficients

are unrestricted in the rightmost column of Panel A, then upstream (downstream)

uncertainty has a negative (positive) price of risk, and each of these slope coefficients

is statistically significant at better than the 1% level. Economically, states of high

upstream (downstream) macro-level uncertainty are associated with bad (good) times

for investors. The results in Panel B, which are based on a more comprehensive set of

test assets, mirror those in Panel A. Thus, the table documents that marginal utility

increases (decreases) with higher macro-level upstream (downstream) uncertainty.

Robustness. Table OA.7.6 of the Online Appendix shows that the market prices

of risk the aggregate supply-chain uncertainties are robust along two dimensions.

First, estimating these prices of risk using more comprehensive sets of 62 or 92 tests

assets produces qualitatively and quantitatively similar results. Second, perturbing

the set of predictors Γt used in equations (6) does not change our results.

4.4 Supply-chain uncertainties and the COVID-19 crisis

Cyclicality. By jointly controlling for upstream and downstream uncertainty in

equation (6), we effectively isolate the component of downstream uncertainty that

is orthogonal to upstream uncertainty. This orthogonal component is procyclical.

To illustrate this point, Figure 4 plots the time series of both macro-level upstream

uncertainty (top panel) and the orthogonal component of downstream uncertainty

(bottom panel). The orthogonal component is computed by projecting downstream

uncertainty on contemporaneous upstream uncertainty, and computing the residuals.

Macro-level upstream uncertainty is countercyclical, typically rising around NBER

recession, and reaching peaks in the periods surrounding the Great Recession, the dot-

com crash, and the 1987 stock market crash. In contrast, the orthogonal downstream

uncertainty typically declines in recessions, and rises during the technological boom

of late 1990s. The counter- (pro-) cyclicality of upstream (orthogonal downstream)

macro-level uncertainty is in line with the IRFs in Section 4.2.

COVID-19. The recent COVID-19 pandemic has brought an almost unprece-
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Figure 4: Macro-level upstream uncertainty, and orthogonal downstream uncertainty
The figure shows the quarterly time series of macro-level upstream uncertainty (top panel) and the
orthogonal macro-level downstream uncertainty (bottom panel). We compute the macro-level uncer-
tainties following the procedure described in Section 4.1. The orthogonal component represents the
residuals from a projection of macro-level upstream uncertainty σU,t onto downstream uncertainty
σD,t. Each time series spans 1974Q1 to 2018Q4. Shaded regions represent NBER recessions.

dented level of uncertainty to financial markets. This was particularly manifested by

the VIX index, displayed in the top panel of Figure OA.7.4. The VIX increased by

nearly 200% in the first quarter of 2020. While part of this increase likely reflects

higher risk aversion, there is little doubt that the global pandemic was both a negative

first-moment shock and a positive second-moment shock. At the onset of the pan-

demic, macroeconomic uncertainty spiked, for example, due to the unknown nature

of the disease, duration of imposed shutdowns, and timing of a potential vaccine.

Was the uncertainty shock associated with COVID-19 driven by macro-level up-

stream or downstream uncertainty? We check this by extending the time-series of

each uncertainty to October 2020. Because the BEA I-O tables for 2017 are unavail-

able (these tables are published with five year lag), we assume that industries’ vertical

positions in 2020 are identical to those implied by the I-O tables for 2012. We extend

these time series by following the same producures described in Section 4.1.

The middle panel of Figure OA.7.4 shows the component of downstream uncer-

tainty that is orthogonal from upstream uncertainty around the onset of the COVID-

19 crisis. By construction, the average level of the orthogonal downstream uncertainty
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is zero and, as discussed earlier, this orthogonal component turns negative in most

past recessions. Notably, we find that the orthogonal downstream uncertainty spikes

during March 2020. Thus, while downstream uncertainty was dominated by upstream

uncertainty in most past contractions, the opposite is true for the recent crisis.

This result sheds light on the potential origins of the economic recession and its

prognosis. First, a priori, it is unclear whether the COVID-19-induced contraction

represents a supply- or demand-side shock. Our results suggest that the latter is

more likely. A possible narrative is that the sharp decline in economic activity during

the first half of 2020 was largely driven by lockdown restrictions, and precautionary

consumer behavior. This negative demand shock propagated upstream, but primarily

affected downstream firms. Second, our findings in Section 4.2 suggest that higher

downstream uncertainty positively predicts future economic growth. Consistent with

these findings, along with the fact that downstream uncertainty was more dominant

at the onset of the COVID-19 recession, the bottom panel of Figure OA.7.4 shows that

while industrial production dropped from January to April of 2020, output largely

recovered by July of 2020. Put differently, unlike upstream uncertainty, downstream

uncertainty shocks do not deepen recessions, and may even hasten recovery. This

seems to be the case thus far in the data. As of Q3 of 2020, the orthogonal component

of downstream uncertainty is roughly zero, though slightly negative. So long as this

orthogonal component does not fall significantly, the evidence presented in this study

suggets that a full economic recovery should not be hindered by uncertainty.

5 Conclusion

We examine the theoretical and empirical implications of uncertainties that orig-

inate in different locations of firms’ supply-chain environments on firms’ real eco-

nomic activity and financial valuation. Higher upstream (downstream) uncertainty,

stemming from suppliers (customers), is negatively (positively) related to firms’ in-

vestment and valuations. This asymmetry holds at the micro-level (i.e., firm-level),

and even more strongly at the aggregate-level. Specifically, macro-level upstream

(downstream) uncertainty leads to a decline (increase) in key macroeconomic and fi-

nancial market variables, such as output, consumption, investment, and the market’s

price-to-dividend ratio, and increases (decreases) the marginal utility of investors.
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On the theoretical front, we construct a real-option model that predicts the afore-

mentioned asymmetry. The key feature of the model is the realistic delay between

the times when a firm initiates an investment project and when the firm receives its

first revenue. This “time-to-build” period implies that downstream (upstream) uncer-

tainty, related to input prices from suppliers (output price to customers), impacts the

firm in the short (long) run. Upstream uncertainty depresses investment due to the

traditional “bad news principle,” while downstream uncertainty can sharply increase

the opportunity cost of waiting via “growth option” channels and hasten investment.

On the empirical front, we take a “bottom-up” approach to examine the rela-

tion between the two types of uncertainty and firm-level outcomes. We find that

higher upstream uncertainty supresses investment and valuations, whereas higher

downstream uncertainty never decreases, and often increases, these variables. More-

over, the positive link between downstream uncertainty and investment increases for

longer time-to-build industries. These results are in line with our real-option model.

We also construct aggregate measures of the supply-chain uncertainties and show that

the micro-level results aggregate up to the macro-level.

Overall, our findings suggest that while higher uncertainty is often associated with

lower investment and asset prices, the effects of uncertainty are more nuanced. Al-

though upstream uncertainty is associated with contractions, downstream uncertainty

may have an expansionary impact. This finding bears implications for policymakers

who may opt to react to the two supply-chain uncertainties differently. For example,

as the COVID-19 crisis was accompanied by a rise in downstream uncertainty, the

effects of which are larger for longer time-to-build projects, policies that increase the

time required to enter the product market (e.g., more trials and testing) may promote

investment. We leave the theoretical exploration of such policies for future research.
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A Online appendix

OA.1 Static model solution

OA.1.1 Model 1

The NPV for exercising the option to invest at time 0 is:

NPV Model 1
0 =

1

4

{
−Ps + Pc − ω +

β

1− β
(Pc + hσc − ω)

}
︸ ︷︷ ︸

NPV0[Pc(V G)]>0

+
1

4

{
−Ps + Pc − ω +

β

1− β
(Pc + σc − ω)

}
︸ ︷︷ ︸

NPV0[Pc(G)]>0

+
1

4

{
−Ps + Pc − ω +

β

1− β
(Pc − σc − ω)

}
︸ ︷︷ ︸

NPV0[Pc(B)]<0

+
1

4
{−Ps + Pc − ω − βa}︸ ︷︷ ︸

NPV0[Pc(V B)]<0

,

The NPV for of waiting to invest at time 1 is:

E0[NPV
Model 1
1 ] =

β

8

{
−(Ps − σs) +

1

1− β
(Pc + hσc − ω)

}
︸ ︷︷ ︸

NPV1[Pc(V G),Ps(down)]>0

+
β

8

{
−(Ps − σs) +

1

1− β
(Pc + σc − ω)

}
︸ ︷︷ ︸

NPV1[Pc(G),Ps(down)]>0

+
β

8

{
−(Ps + σs) +

1

1− β
(Pc + hσc − ω)

}
︸ ︷︷ ︸

NPV1[Pc(V G),Ps(up)]>0

.

OA.1.2 Model 2

NPV Model 2
0 =

1

4

{
−Ps +

β

1− β
(Pc + hσc − ω)

}
︸ ︷︷ ︸

NPV0[Pc(V G)]>0

+
1

4

{
−Ps +

β

1− β
(Pc + σc − ω)

}
︸ ︷︷ ︸

NPV0[Pc(G)]>0
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+
1

4

{
−Ps +

β

1− β
(Pc − σc − ω)

}
︸ ︷︷ ︸

NPV0[Pc(B)]<0

+
1

4
{−Ps − βa}︸ ︷︷ ︸
NPV0[Pc(V B)]<0

,

E0[NPV
Model 2
1 ] = +

1

8
β

{
−(Ps − σs) +

β

1− β
(Pc + hσc − ω)

}
︸ ︷︷ ︸

NPV1[Pc(V G),Ps(down)]>0

+
1

8
β

{
−(Ps − σs) +

β

1− β
(Pc + σc − ω)

}
︸ ︷︷ ︸

NPV1,[Pc(G),Ps(down)]>0

+
1

8
β

{
−(Ps + σs) +

β

1− β
(Pc + hσc − ω)

}
︸ ︷︷ ︸

NPV1,[Pc(V G),Ps(up)]>0

.

OA.2 Dynamic model solution

We outline the solution to the model in Section 2.2. Let V0(Pc,t, Ps,t) denote the
value of the firm that produces using only assets-in-place and has not (yet) exercised
its growth option. V1(Pc,t) denotes the value of a firm with an active (productive)
growth option and, finally, let V2(Pc,t, θ) represent the value of a firm with a project
under construction, where θ is the elapsed time-to-build.

We conjecture and verify that the value of the firm that produces using only
assets-in-place is

V0(Pc,t, Ps,t) = B1(Ps,t) · (Pc,t)β1 +B2(Ps,t) · (Pc,t)β2 +B3(Ps,t) · (Pc,t)β3︸ ︷︷ ︸
Growth option value

+
Pc,tk0
ρ− µc︸ ︷︷ ︸

Assets in place value

,

where β1, β2, β3 are positive scalars, and where Bi(Ps,t) for i = 1, 2, 3 are scalars
that depend on the current input price state Ps,t ∈ {Ps,L, Ps,M , Ps,H}. Similarly, we
conjecture and verify that the value of a firm with an active growth opportunity is:

V1(Pc,t) = A(Pc,t)
α︸ ︷︷ ︸

Abandonment option value

+
Pc,t(k0 + kg)

ρ− µc
− ω(k0 + kg)

ρ︸ ︷︷ ︸
Augmented value from installed capital

,

where α < 0, and A is a constant. The value function of a firm in the time-to-build

Online appendix - p.2



stage, where θ units of the build period have passed, is given by:

V2(Pc,t, θ) = E

[∫ t+θ

t

e−ρs(Pc,s − ω)k0ds

]
︸ ︷︷ ︸

(I)

+ e−ρθE [V1(Pc,t+θ)|Pc,t+θ > ξ]︸ ︷︷ ︸
(II)

+ e−ρθE [V0(Pc,t+θ)|Pc,t+θ < ξ]︸ ︷︷ ︸
III

,

where in the equation above, term (I) is the discounted profits before the time-to-build
is complete, obtained from existing assets in place only, term (II) is the discounted
value of the firm it is chooses to operate the new project when time-to-build is over,
and term (III) is the discounted value of the firm if it chooses to abandon immediately
when the time-to-build period is over. ξ is the endogenous abandonment threshold
for the output price. With some algebra, V2 can be simplified to:

V2(Pc,t, θ) = (1− Φ(u(Pc,t, θ)− ασc))A(Pc,t)
αeα(µc−

σ2c
2
)θ+

α2σ2cθ

2
−ρθ

+(1− Φ(u(Pc,t, θ)− σc))
Pc,tkg
ρ− µc

eµcθ−ρθ − (1− Φ(u(Pc,t, θ)))
ω(k0 + kg)

ρ
e−ρθ

+Σ3
i=1Φ(u(Pc,t, θ)− βiσc)Bi(Ps,M)(Pc,t)

βieβi(µc−σ
2
c/2)+

β2i σ
2
cθ

2
−ρθ +

Pc,tk0
ρ− µc

where

u(Pc,t, θ) =
logξ − logPc,t − (µc − σ2

c/2)θ

σc
√
θ

The optimal investment rule is given by investment thresholds ξ(Ps) that depends on
the state of the input price Ps ∈ {Ps,L, Ps,M , Ps,H}. It is optimal to exercise the growth
option at time t when Ps,t = Ps ∈ {Ps,L, Ps,M , Ps,H} if and only if Pc,t ≥ ξ(Ps). The
coefficients {βi, Bi(Ps)}{i=1,2,3} and the optimal exercise thresholds ξ(Ps) are jointly
determined by value-matching and smooth-pasting conditions:

V0(ξ(Ps), Ps) = V2(ξ(Ps), h)− Pskg, for Ps ∈ {Ps,L, Ps,M , Ps,H}
∂

∂Pc
V0(ξ(Ps), Ps) =

∂

∂Pc
V2(ξ(Ps), h).

Similarly, the optimal abandonment rule is given by an abandonment threshold
ξ, such that it is optimal abandon if and only if Pc ≤ ξ. The coefficients A, α, along
with the optimal abandonment threshold are jointly determined by value-matching
and smooth-pasting conditions:

V1(ξ) = V0(ξ, Ps,M)

∂

∂Pc
V1(ξ) =

∂

∂Pc
V0(ξ, Ps,M).
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OA.3 Variable description and construction

OA.3.1 Micro-level variables

Book-to-market ratio. A firm’s book-to-market ratio is constructed by follow-
ing Daniel and Titman (2006). Book equity is defined as shareholders’ equity minus
the value of preferred stock. If available, shareholders’ equity is set equal to stock-
holders’ equity (Compustat Annual item SEQ). If stockholders’ equity is missing,
then common equity (Compustat Annual item CEQ) plus the par value of preferred
stock (Compustat Annual item PSTK) is used instead. If neither of the two previous
definitions of stockholders’ equity can be constructed, then shareholders’ equity is
the difference between total assets (Compustat Annual item AT) and total liabilities
(Compustat Annual item LT). For the value of preferred stock we use the redemption
value (Compustat Annual item PSTKRV), the liquidating value (Compustat Annual
item PSTKL), or the carrying value (Compustat Annual item PSTK), in that order of
preference. We also add the value of deferred taxes and investment tax credits (Com-
pustat Annual item TXDITC) to, and subtract the value of post-retirement benefits
(Compustat Annual item PRBA) from, the value of book equity if either variable is
available. Finally, the book value of equity in the fiscal year ending in calendar year
t− 1 is divided by the market value of common equity from December of year t− 1.

Downstream uncertainty (stock return volatility). Our primary measure
of the uncertainty of the customers of firm i at time t, based on realized stock return
volatility, is computed three steps. First, we identify the customers associated with
firm i at time t using the procedure outlined in Section 3.1. Second, for each customer
associated with firm i at time t, we compute the standard deviation of the daily
stock returns of each customer in the year preceding time t. When calculating these
standard deviations we (i) adjust daily stock returns for delisting events, and (ii)
require that each customer firm has at least 200 non-missing daily stock returns in
the previous year. Third, we calculate the equal-weighted average of all standard
deviations computed in the previous step of the procedure.

Downstream uncertainty (idiosyncratic stock return volatility). We con-
struct an additional proxy of the uncertainty of the customers of firm i at time t
using the idiosyncratic volatility of daily stock returns. This alternative measure of
customer-level uncertainty is computed three steps. First, we identify the customers
associated with firm i at time tusing the procedure outlined in Section 3.1. Second,
for each customer associated with firm i at time t, we compute the idiosyncratic
volatility of the firm’s stock returns by following Ang, Hodrick, Xing, and Zhang
(2006). That is, we project each customer’s (de-listing adjusted) excess daily stock
returns in the year preceding time t on the Fama and French (1993) factors, provided
there are at least 200 valid daily returns in the previous year. We then compute
the standard deviations of the residuals obtained from the aforementioned regression.
Third, we calculate the equal-weighted average idiosyncratic return volatility across
all customers identified in the previous steps.
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Downstream uncertainty (implied volatility). We construct an additional
proxy of the uncertainty of the customers of firm i at time t using the implied volatility
of each customer firm’s out-of-the-money put options. This alternative measure of
customer-level uncertainty is computed three steps. First, we identify the customers
associated with firm i at time t using the procedure outlined in Section 3.1. Second,
for each customer associated with firm i at time t, we compute the daily mean implied
volatility of the firm by taking the equal-weighted average implied volatility across
all put options with between seven and 365 calendar days to maturity, and with
a moneyness between 0.80 and 0.95. We then compute the time-series average of
this implied volatility over all days in the year preceding time t. Finally, we then
calculate the equal-weighted average implied volatility across all customers identified
in the previous steps. We use option data from OptionMetrics to construct this proxy
of customer-level uncertainty.

Financial constraints. We measure a firm’s financial constraints by constructing
the Kaplan and Zingales (1997) index in the way described by Lamont, Polk and Saaa-
Requejo (2001). That is, we use the estimated ordered logit coefficients in Table 9 of
Lamont et al. (2001) to construct our firm-level index of financial constraints.

Investment rate. Following Belo et al. (2014), the investment rate is computed
as capital expenditure (Compustat Annual item CAPX) minus the sales of prop-
erty, planet, and equipment (Compustat Annual item SPPE) scaled by the average
net property, planet, and equipment in years t and t − 1 (Compustat Annual item
PPENT). Missing values of SPPE are set to zero.

Momentum. A firm’s past return momentum in month t is defined as its cu-
mulative return between months t − 11 and t − 1 Jagadeesh and Titman (1993).
This measure is constructed using CRSP Monthly return data that is adjusted for
de-listing events.

Number of customers. We compute the number of customers associated with
firm i in year t as follows. First, we use the FactSet Relationship databse to identify
all customers in each year between 2003 and 2018. Second, we use the Compustat
Segments data from Barrot and Sauvagnat (2016) to count the number of customers
associated with firm i in each year prior to 2003 (when FactSet data is unavailable).

Number of suppliers. We compute the number of suppliers associated with
firm i in year t as follows. First, we use the FactSet Relationship databse to identify
all suppliers in each year between 2003 and 2018. Second, we use the Compustat
Segments data from Barrot and Sauvagnat (2016) to count the number of suppliers
associated with firm i in each year prior to 2003 (when FactSet data is unavailable).

Own uncertainty (stock return volatility). Our primary measure of the
uncertainty of firm i at time t is the standard deviation of the firm’s daily stock
returns in the year preceding time t. To compute this standard deviation we adjust
daily stock returns for delisting events and also require that each firm has at least
200 non-missing daily stock returns in the previous year.

Own uncertainty (idiosyncratic stock return volatility). We construct
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an additional proxy of the uncertainty of firm i at time t using the idiosyncratic
volatility of the firm’s daily stock returns in the year preceding time t. Here, we
measure idiosyncratic volatility in accordance with Ang et al. (2006). Specifically, we
project the firm’s daily excess stock returns on the Fama and French (1993) factors,
provided there are at least 200 valid daily returns in the previous year. We then
compute the standard deviations of the residuals obtained from the aforementioned
regression. In constructing this measure of idiosyncratic volatility we adjusted daily
stock returns for delisting events.

Own uncertainty (implied volatility). We construct an additional proxy of
the uncertainty of firm i at time t using the average implied volatility of the firm’s
out-of-the-money put options over the year preceding time t. To compute the average
implied volatility of each firm on each day we take the equal-weighted average implied
volatility across all put options with between seven and 365 calendar days to maturity,
and with a moneyness between 0.80 and 0.95. We use option data from OptionMetrics
to construct this proxy of firm-level uncertainty.

Price-earnings ratio. We measure the price-to-earnings rate of firm i at time
t by scaling the firm’s stock price from CRSP at time t by the firm’s earnings per
share excluding extraordinary items (Compustat Annual item EPSFX). We draw
these price-earnings ratio from the firm-level financial ratios dataset on WRDS.

Profitability. A firm’s profitability, as measured by return on assets, is computed
as net income (Computat Annual item NI) divided by total assets (Compustat Annual
item AT).

Real sales growth. The real sales growth rate is defined as the growth rate of
real sales between years t− 1 and t.

Real inventory growth. The inventory growth rate is defined following Belo
and Lin (2012). That is, we compute the annual percentage change in each firm’s
inventory holdings (Compustat Annual item INVT) after converting the value of
inventories to real terms.

Tobin’s q. We define Tobin’s q as the book value of assets (Compustat Annual
Item AT) minus the book value of common equity (Compustat Annual Item CEQ)
plus the market value of common equity (Compustat Annual Item CSHO), divided
by the book value of assets.

Upstream uncertainty (stock return volatility). Our primary measure of
the uncertainty of the customers of firm i at time t, based on realized stock return
volatility, is computed three steps. First, we identify the suppliers associated with
firm i at time t using the procedure outlined in Section 3.1. Second, for each supplier
associated with firm i at time t, we compute the standard deviation of the daily stock
returns in the year preceding time t. When calculating these standard deviations we
(i) adjust daily stock returns for delisting events, and (ii) require that each supplier
firm has at least 200 non-missing daily stock returns in the previous year. Third,
we calculate the equal-weighted average of all standard deviations computed in the
previous step of the procedure.
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Upstream uncertainty (idiosyncratic stock return volatility). We con-
struct an additional proxy of the uncertainty of the suppliers of firm i at time t
using the idiosyncratic volatility of daily stock returns. This alternative measure of
suppliers-level uncertainty is computed three steps. First, we identify the suppliers
associated with firm i at time t using the procedure outlined in Section 3.1. Second,
for each supplier associated with firm i at time t, we compute the idiosyncratic volatil-
ity of the firm’s stock returns by following Ang et al. (2006). That is, we project each
supplier’s (de-listing adjusted) excess daily stock returns in the year preceding time t
on the Fama and French (1993) factors, provided there are at least 200 valid daily re-
turns in the previous year. We then compute the standard deviations of the residuals
obtained from the aforementioned regression. Third, we calculate the equal-weighted
average idiosyncratic return volatility across all suppliers identified in the previous
steps.

Upstream uncertainty (implied volatility). We construct an additional
proxy of the uncertainty of the suppliers of firm i at time t using the implied volatil-
ity of each supplier firm’s out-of-the-money put options. This alternative measure
of supplier-level uncertainty is computed three steps. First, we identify the suppliers
associated with firm i at time t using the procedure outlined in Section 3.1. Second,
for each supplier associated with firm i at time t, we compute the daily mean implied
volatility of the firm by taking the equal-weighted average implied volatility across
all put options with between seven and 365 calendar days to maturity, and with a
moneyness between 0.80 and 0.95. We then compute the time-series average of this
implied volatility over all days in the year preceding time t. Finally, we then calcu-
late the equal-weighted average implied volatility across all suppliers identified in the
previous steps. We use option data from OptionMetrics to construct this proxy of
supplier-level uncertainty.

OA.3.2 Aggregate uncertainty variables

Default spread. The default spread at time t is defined as the difference between
yields on AAA-rated corporate bonds and the yields on BAA-rated yields at the same
point in time. We draw the default spread from the updated dataset corresponding
to Welch and Goyal (2008), which is available on Amit Goyal’s website.

Downstream stock return volatility. Our primary measure of aggregate
downstream uncertainty at time t, based on realized stock return volatility, is com-
puted as follows. First, we calculate the vertical position of each industry at a given
point in time following the procedure outlined in 4.1, and map these industry-level
vertical position scores to the firm-level. Second, define downstream firms as those
firms with a vertical position score that is below the 10th percentile of the cross-
sectional distribution of vertical position scores at the given point in time. Third, we
compute the realized stock return volatility of each firm assigned to the downstream
portfolio in month t. When computing these monthly measures of realized stock re-
turn volatility we (i) adjust the CRSP daily stock return data for delisting events, and
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(ii) require that each firm has 15 valid returns in each month. Fourth, we then take
the value-weighted average realized stock return volatility across all firms assigned to
the downstream portfolio in month t. In applications that require a monthly measure
of aggregate downstream uncertainty, we end the procedure here. In applications that
require a quarterly measure of aggregate downstream uncertainty, we define down-
stream uncertainty in quarter t as the time-series average value of monthly aggregate
downstream uncertainty over the three month in quarter t.

Excess market returns. We obtain the quarterly excess returns of the market
portfolio using data on the market factor underlying the Fama and French (1993)
three-factor model. Specifically, we compound the monthly returns associated with
the excess market return factor to the quarterly frequency. We implement this calcu-
lation using factor return data drawn from Ken French’s data library.

Industrial production. We measure the quarterly growth rate of industry pro-
duction at time t using the logarithmic growth rate of the Board of Governors of the
Federal Reserve System’s industrial production index. We obtain our data on the
industrial production index from FRED, and express the quarterly growth rate as a
percentage.

Inflation rate. The inflation rate at time t is computed using the consumer
price index for all urban consumers constructed by the Bureau of Labor Statistics.
We draw this inflation rate date from the updated dataset corresponding to Welch
and Goyal (2008), which is available on Amit Goyal’s website.

Price-dividend ratio. We compute the price-divided ratio of the S&P 500 index
at time t by dividing the price index of the S&P 500 at time t by the twelve-month
moving sum of dividends paid by the constituents of the S&P 500 index over the 12
months preceding time t. We obtain data on both components of the price-dividend
ratio from the updated dataset corresponding to Welch and Goyal (2008), which is
available on Amit Goyal’s website.

Real consumption growth. We construct the quarterly growth rate of real con-
sumption at time t in four steps. First, we compute the sum of personal consumption
expenditures on non-durable goods and personal consumption expenditures on ser-
vices. Each of these components of personal consumption expenditure is constructed
by the Bureau of Economic Analysis, and is expressed in nominal terms in units of
billions of dollars. Second, we deflate the nominal values of personal consumption
expenditures by the consumer price index deflator to express consumption expendi-
tures in real terms. Specifically, we use the deflator associated with the consumer
price index for all urban consumers constructed by the Bureau of Labor Statistics.
Third, we scale real personal consumption expenditures at each point in time by the
size of the U.S. population, as reported by the Bureau of Economic Analysis. Finally,
to compute the quarterly growth rate of real consumption expenditures, we begin
by aggregate consumption expenditures from the monthly frequency to the quarterly
frequency. This is done by computing the average value of real consumption expen-
ditures per capita per quarter. We then compute the logarithmic growth rate of
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this quarterly real consumption expenditures per capita series. We obtain each of
the aforementioned series from FRED, and express the quarterly growth rate of real
consumption as a percentage.

Real gross domestic product. We construct the quarterly growth rate of real
gross domestic production (GDP) at time t by computing the logarithmic growth rate
of real gross domestic product per capita, as constructed and reported by the Bureau
of Economic Analysis. We obtain our data on real GDP per capita from FRED, and
express the quarterly growth rate as a percentage.

Real private investment. We construct the quarterly growth rate of real private
investment at time t in three steps. First, we compute the sum of private non-
residential fixed investment and private residential fixed investment. Each of these
series is constructed by the Bureau of Economic Analysis and expressed in nominal
terms in units of billions of dollars. Second, we deflate the nominal values of private
investment by the consumer price index deflator to express consumption expenditures
in real terms. Specifically, we use the deflator associated with the consumer price
index for all urban consumers constructed by the Bureau of Labor Statistics. Finally,
we compute the logarithmic quarterly growth rate of this real private investment
series. We obtain each of the aforementioned series from FRED, and express the
quarterly growth rate of real private investment as a percentage.

Risk-free rate. We use the Treasury-bill rate as our proxy for the risk-free rate at
time t. We obtain data on the risk-free rate from the updated dataset corresponding
to Welch and Goyal (2008), which is available on Amit Goyal’s website.

Term spread. The term spread at time t is defined as the difference between
the yield on long-term Treasury bonds and the Treasury-bill rate. We draw the term
spread from the updated dataset corresponding to Welch and Goyal (2008), which is
available on Amit Goyal’s website.

Upstream stock return volatility. Our primary measure of aggregate up-
stream uncertainty at time t, based on realized stock return volatility, is computed
as follows. First, we calculate the vertical position of each industry at a given point
in time following the procedure outlined in 4.1, and map these industry-level vertical
position scores to the firm-level. Second, define upstream firms as those firms with
a vertical position score that exceeds the 90th percentile of the cross-sectional dis-
tribution of vertical position scores at the given point in time. Third, we compute
the realized stock return volatility of each firm assigned to the upstream portfo-
lio in month t. When computing these monthly measures of realized stock return
volatility we (i) adjust the CRSP daily stock return data for delisting events, and
(ii) require that each firm has 15 valid returns in each month. Fourth, we then take
the value-weighted average realized stock return volatility across all firms assigned
to the upstream portfolio in month t. In applications that require a monthly mea-
sure of aggregate upstream uncertainty, we end the procedure here. In applications
that require a quarterly measure of aggregate upstream uncertainty, we define up-
stream uncertainty in quarter t as the time-series average value of monthly aggregate
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upstream uncertainty over the three month in quarter t.

OA.4 Cleaning BEA Input-Output tables

We use the BEA Make and Use tables for years 2012, 2007, 2002, 1997, 1992,
1987, 1982, and 1977 to measure industry-level vertical position using equation (5).
For each set of tables we define Nt (Ct) as the number of industries (commodities)
that exist within the BEA tables in year t. The dimensions of the Make table, which
we denote by Mt, are Nt × Ct. Similarly, the dimensions of the Use table, which we
denote by Ut, are Ct × (Nt + 1). The first Nt columns of Ut contain the dollar flow
of a commodity into each industry (i.e., record the value of the commodity used by
the industry as an input), while the last column of Ut contains the dollar value of the
commodity used for final consumption.

Next, we normalize the Make and Use tables so that the sum of each row is one.
Specifically, we define the matrices M̃t and Ũt such that

M̃j,i,t = Mj,i,t

/(
Ct∑
z=1

Mj,z,t

)
, ∀i ∈ {1, . . . , Nt} and j ∈ {1, . . . , Ct}

Ũi,j,t = Ui,j,t

/(
Nt+1∑
z=1

Ui,z,t

)
, ∀i ∈ {1, . . . , Nt} and j ∈ {1, . . . , Ct}.

Here, element (j, i) in M̃ captures the share of commodity i produced by industry
j, and element (i, j) in Ũt represents the share of commodity i used by industry j.
When computing these shares we take the possibility that some of the commodity
may be used for final consumption into account. We remove industries related to
the state, local, and Federal government (denoted by entries S001-S007) and Other
Services (denoted by NAICS code 81). The final consumption use of each commodity
(i.e., the final column of each Use table) is drawn from the Personal Consumption
Expenditure columns of the BEA USe files (denoted by F01000 or 910000).

If the sum of a particular row of the Use table, denoted by the matrix Ut, is
zero, then we set the respective rows of the normalized Use table, denoted by Ũt,
to zero also. Likewise, when we compute the normalize Use matrix Ũt we remove
industries that supply for than 90% of their output to themselves. That is, we ex-
clude any industries for which Ũt,(i,i) > 0.90. We apply this filter because these
industries are essentially disconnected from the broader economy, yet have extremely
high vertical position scores. If we were to include these few but extreme industries
in our calculations of vertical position, then the vertical positions of the relatively
few industries that supply to these disconnected industries, either directly or indi-
rectly, would become elevated. Also note that equation (5) features a Nt×Nt matrix
Tt ≡ M̃Nt×Ct × ŨCt×Nt , where element (i, j) of matrix Tt contains the amount trans-
fered from industry i to industry j. For each row i in Tt, if the element (i, j) is less
than 1%, we set this element equal to zero and distribute this small amount among
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the non-negligible elements of row i. This filter allows us to minimize any noise in
the Make and Use tables, and allows us to focus on the most economically important
inter-industry transfers. We then use these definitions of M̃t and Ũt to compute the
vertical position scores using equation (5).

In order to link the BEA-implied vertical position measures to the CRSP/Compustat
universe of firms we make use of data provided by the BEA to map industry codes
in the Make and Use tables to NAICS codes (for the 1997, 2002, 2007, and 2012
tables) and to SIC codes (for the 1977, 1982, 1987, and 1992 tables). For the NAICS-
based tables in the post-1997 period, we map NAICS codes to the CRSP/Compustat
universe as follows. First, we try to match each firm’s six-digit NAICS code to the
six-digit NAICS codes of the available industries. If no matches are found, we then
try to match each firm’s five-digit NAICS code to the five-digit NAICS codes of the
available industries. If no matches are found, we then apply this same process to
four-digit, three-digit, and two-digit NAICS codes (in that order). Likewise, for the
pre-1997 period, we first try to match each firm to an industry using four-digit SIC
codes. For the firms that remain unmatched, we then try to match each firm to an
industry based on three-digit, or two-digit SIC codes (in that order).

OA.5 Input/Output Price Uncertainty versus Supplier/Customer
Return Volatility

In this section we provide empirical evidence to support the assumption that input
(output) price uncertainty is positively related to uncertainty over the valuations of a
firm’s suppliers (customers). We obtain annual time-series for output prices (PISHIP)
and input prices (PIIINV) that are specific to a cross-section of 473 manufacturing in-
dustries covered by the NBER-CES Manufacturing Industry Database (using the 1997
NAICS industry classification). These time-series span year τ ∈ {1958, . . . , 2018}.
For each industry i, we model the annual log growth in PISHIP and PIINV using
a GARCH(1,1) model to obtain the output and input price uncertainty, denoted by
σ̂P (Output),i,τ and σ̂P (Input),i,τ , respectively.

For each industry i we use the 1997 BEA Make and Use Tables, described in
Section OA.4, to compute the flow-weighted stock returns of the industry’s customers
and suppliers. Below, we let N (C) denote the number of industries (commodities)
that exist within the BEA Make and Use tables. In line with the notation in Section
OA.4, we refer to the Make matrix as MN×C and the Use matrix as UC×N . The flow
of inputs from industry i to industry j is then recorded in element

A(i, j) =
C∑
c=1

M(i, c)

(
U(c, j)∑N
k=1 U(c, k)

)
of matrix AN×N . Given AN×N , we construct the monthly time-series of the returns
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of industry i’s customers as

rCustomer
i,t =

N∑
j=1

wc,ij rj,t, where wc,ij = A(i, j)/
∑
k

A(i, k).

Similarly, the monthly time-series of the returns of industry i’s suppliers is

rSupplieri,t =
N∑
j=1

ws,ij rj,t, where ws,ij = A(j, i)/
∑
k

A(k, i).

Next, in December of each year τ we construct the realized return volatility of rCustomer
i,t

and rSupplieri,t over the last M months, denoted by RVCustomer,i,τ and RVSupplier,i,τ . In
the benchmark case we set M = 3 to encompass the latest quarter, but we obtain
very similar results for M = 6 and M = 12.

We then focus on industries in our sample that overlap with the NBER-CES
database, represented by NCES. For each i ∈ NCES we compute two time-series corre-
lations: (i) the correlation between the industry’s output price uncertainty and the in-
dustry’s customer return volatility, ρiP (Output),R(Customer) = ρ(σ̂P (Output),i,τ , RVCustomer,i,τ ),

and (ii) the correlation between the industry’s input price uncertainty and the indus-
try’s supplier return volatility, ρiP (Input),R(Supplier) = ρ(σ̂P (Input),i,τ , RVSupplier,i,τ ). We
only compute these correlation for industries for which there are at least ten overlap-
ping years of price uncertainty and return volatility data.

Panel A (Panel B) of Figure OA.5.1 shows the histogram of ρiP (Output),R(Customer)(
ρiP (Input),R(Supplier)

)
. Consistent with assumption posited in the empirical analysis,

both ρiP (Output),R(Customer) and ρiP (Input),R(Supplier) are positive and sizable for almost
all industries. Both distributions are right-skewed. The cross-sectional average of
ρiP (Input),R(Supplier) is 0.31 with a t-statistic of 45.41. Likewise, the cross-sectional av-

erage of ρiP (Output),R(Customer) is 0.21 with a t-statistic of 28.27.31

31As mentioned above, we obtain similar results for other choices of M . For example, if M = 6,
then ρiP (Input),R(Supplier) averages 0.18, with a t-statistic of 30.43, while ρiP (Input),R(Supplier) averages
0.14, with a t-statistic of 18.73.
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(a) Input price and supplier return correlations
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Figure OA.5.1: Cross-sectional correlation: price versus return uncertainty
Panel A shows the histogram of ρiP (Input),R(Supplier) and Panel B the histogram of

ρiP (Output),R(Customer). ρiP (Output),R(Customer) is the correlation between industry i’s output price

uncertainty and the industry’s customer return volatility. ρiP (Input),R(Supplier) is the correlation be-
tween industry i’s input price uncertainty and the industry’s supplier return volatility. The sample
period ranges from 1958 to 2018.

OA.6 Additional micro-level results
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OA.6.1 Supplementary tables

Table OA.6.1: Firm-level sales and inventory growth under supply-chain uncertain-
ties
The table reports the relation between a firm’s real sales growth rate (Panel A) or real inventory
growth rate (Panel B) and the contemporaneous level of the firm’s upstream uncertainty (uncertainty
of the firm’s suppliers), the firm’s downstream uncertainty (uncertainty of the firm’s customers), and
the firm’s own uncertainty. The results are based on estimating regression (3), where yi,t is firm
i’s sales growth rate or inventory growth rate obtained from the most recent annual report as mea-
sured at time t. The benchmark upstream and downstream uncertainty are constructed at time
t following the procedure outlined in Section 3.1. In all specifications we include firm and year
fixed effects. In all specifications that feature upstream (downstream) uncertainty we control for the
number suppliers (customers) of each firm. In even column we include additional control variables
including book-to-market ratio, stock return momentum, financial constraints index, profitability,
and Tobin’s q. The definitions of all variables are provided in Section OA.3.1 of the Internet Ap-
pendix. All regressions are estimated using a panel of firm-year observations ranging from 1976 to
2018. t-statistics reported in parentheses are based on standard errors that are clustered at the firm
level.

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Real sales growth

σ(Own) -0.17 -0.06 -0.14 -0.12 -0.11 -0.10 -0.15 -0.01
(-16.91) (-6.31) (-6.42) (-5.32) (-4.33) (-3.64) (-5.14) (-0.36)

σ(Upstream) -0.05 -0.04 -0.03 -0.03
(-3.64) (-3.38) (-1.72) (-1.96)

σ(Downstream) -0.00 0.00 -0.01 -0.01
(-0.04) (0.03) (-0.56) (-0.39)

Adj.-R2 0.14 0.20 0.19 0.19 0.15 0.15 0.20 0.26
Obs. 148120 140768 18221 17304 30803 29323 11902 11336

Panel B: Real inventory growth
σ(Own) -0.11 -0.04 -0.08 -0.05 -0.08 -0.07 -0.08 -0.02

(-13.82) (-4.66) (-4.62) (-2.78) (-5.39) (-5.17) (-3.98) (-0.88)
σ(Upstream) -0.02 -0.03 -0.02 -0.02

(-2.20) (-2.61) (-0.95) (-1.33)
σ(Downstream) 0.02 0.02 0.00 0.00

(1.84) (1.52) (0.03) (0.07)
Adj.-R2 0.10 0.13 0.12 0.12 0.12 0.12 0.12 0.13
Obs. 125896 120157 14925 14262 25102 24023 9797 9386

Controls No Yes No Yes No Yes No Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
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Table OA.6.2: Investment, supply-chain uncertainties, and reversibility
The table reports the relation between a firm’s investment rate and the contemporaneous level of
the firm’s upstream uncertainty (uncertainty of the firm’s suppliers) and downstream uncertainty
(uncertainty of the firm’s customers), conditioning on a proxy for the firm’s investment reversibility.
The proxy is based on capital redeployability measure of Kim and Kung (2017). The results are
based on estimating regression (4), where yi,t is firm i’s investment rate obtained from the most
recent annual report as measured at time t, the “HighReverse” (“LowReverse”) dummy takes the
value of one for firms that have above (below) median values of the capital redeployability proxy.
The benchmark uncertainty measures are constructed at time t following the procedure outlined in
Section 3.1. We include a year fixed effect in all columns, and a firm fixed effect in odd-numbered
columns. In all columns we control for the number customers for each firm, and in columns (3),
(4), (7) and (8) we include additional control variables including book-to-market ratio, stock return
momentum, financial constraints index, profitability, and Tobin’s q. The definitions of all variables
are provided in Section OA.3.1 of the Internet Appendix. t-statistics reported in parentheses are
based on standard errors that are clustered at the firm level.

Panel A: Supplier-level Panel B: Customer-level

(1) (2) (3) (4) (5) (6) (7) (8)
σ(Own) 0.13 -0.09 0.17 -0.04 0.09 -0.07 0.12 -0.04

(8.62) (-6.14) (10.48) (-2.93) (8.60) (-3.79) (8.75) (-1.87)
σ(Upstream) × HighReverse -0.01 -0.03 -0.03 -0.03

(-0.91) (-2.34) (-2.33) (-2.69)
σ(Upstream) × LowReverse -0.07 -0.04 -0.08 -0.04

(-4.81) (-3.20) (-5.72) (-3.54)
σ(Downstream) × HighReverse 0.09 0.03 0.04 0.02

(7.29) (2.91) (3.92) (1.60)
σ(Downstream) × LowReverse 0.00 0.02 -0.02 0.00

(0.17) (1.56) (-1.65) (0.44)

Controls No No Yes Yes No No Yes Yes
Firm FE No Yes No Yes No Yes No Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Adj.-R2 0.03 0.50 0.15 0.53 0.04 0.40 0.16 0.44
Obs. 19456 18794 18375 17703 33339 32240 31473 30379

OA.6.2 Additional robustness

Alternative measures of uncertainty. We consider alternative uncertainty
proxies. First, while the realized volatility used in the benchmark case is highly
persistent, and thus, proxies for expected volatility, we consider a separate uncertainty
measure that is forward looking. This helps to further tighten the link between
the model’s predictions and our empirical results. Specifically, we construct an ex-
ante measure of upstream and downstream uncertainty using the implied volatility
extracted from options written on each firm’s stock. While using option-implied
volatility is theoretically appealing, the use of options data has two costs: (i) the
time series of our sample is truncated, since option data are only available from
1996 onward; and (ii) the cross section of our sample is also reduced to firms that are
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optioned and have a supplier or customer that has options traded on its stock. Second,
we measure upstream and downstream uncertainty using each firm’s idiosyncratic
stock return volatility (IVOL), as defined by Ang et al. (2006). While IVOL is also
a backwards-looking proxy, the use of idiosyncratic (rather than total) stock return
volatility removes some part of the common variation in stock returns, and typically
lowers the correlation between upstream and downstream uncertainty. Details on the
construction of each alternative measure are provided in Section OA.3 of the Online
Appendix.

We re-estimate equation (3) using each alternative measure of uncertainty, and
report the results for IVOL (implied volatility) in Panel A (Panel B) of Table OA.6.3.
Regardless of which measure of uncertainty we employ, we draw the same conclusions
as those obtained from the baseline analysis. That is, higher firm-specific upstream
(downstream) uncertainty suppresses (spurs) investment. In Panel A, the negative
and positive effects of both upstream and downstream uncertainty, respectively, are
both statistically significant, and incremental to the negative effect of a firm’s own
uncertainty on its investment rate. In Panel B, which employs implied volatility as
a measure of uncertainty, the qualitative takeaways are identical to those in Panel
A, although the statistical significance of the results is reduced. This lower degree of
statistical power is expected since the number of firm-year observations in Panel B is
roughly 50% lower than the number of firm-year observations in Panel A.

In Table OA.6.5 of Online Appendix we consider another modification to the
benchmark uncertainty measures. When constructing upstream uncertainty, we weigh
each supplier based on the relative size of its sales. When constructing downstream
uncertainty, we weigh each customer based on the relative magnitude of its cost of
goods solds (COGS). The results are qualitatively and quantitatively similar to the
benchmark case.

Sub-sample evidence. To ensure our results are not driven by the early part
of our sample period (for which Factset data is not available), Table OA.6.4 in the
Online Appendix considers the effects of upstream and downstream uncertainty on
firm-level investment rates in the most recent half of our sample period. That is,
we report the results of estimating equation (3) using data from June 1997 to June
2018 only. The results are qualitatively and quantitatively similar to the full-sample
results in Table 2.
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Table OA.6.3: Investment and alternative measures of supply-chain uncertainties
The table reports the relation between a firm’s investment rate and alternative uncertainty mea-
sures, capturing the contemporaneous level of the firm’s upstream uncertainty (uncertainty of the
firm’s suppliers), the firm’s downstream uncertainty (uncertainty of the firm’s customers), and the
firm’s own uncertainty. The results are based on estimating regression (3), where yi,t is firm i’s
investment rate obtained from the most recent annual report as measured at time t. In Panel A,
the uncertainty measures are based on the idiosyncratic return volatility stock returns. In Panel
B, the uncertainty measures are based on the implied volatility extracted from of out-of-the-money
put options written on each firms’ stocks. Given the alternative measures, we construct the un-
certainty for each firm, its suppliers and its customers following the procedure outlined in Section
3.1. In all specifications we include firm and year fixed effects. In all specifications that feature
upstream (downstream) uncertainty we control for the number suppliers (customers) of each firm.
In even column we include additional control variables including book-to-market ratio, stock return
momentum, financial constraints index, profitability, and Tobin’s q. The definitions of all variables
are provided in Section OA.3.1 of the Internet Appendix. The regressions in Panel A (Panel B) are
estimated using an unbalanced panel of firm-year observations ranging from 1976 (1996) to 2018.
t-statistics reported in parentheses are based on standard errors that are clustered at the firm level.

Panel A: IVOL Panel B: Implied volatility

(1) (2) (3) (4) (5) (6) (7) (8)
σ(Own) -0.09 -0.09 -0.09 -0.09 -0.05 -0.05 -0.00 -0.00

(-6.79) (-6.25) (-4.12) (-3.47) (-2.51) (-2.90) (-0.18) (-0.00)
σ(Upstream) -0.03 -0.03 -0.02 -0.03

(-3.60) (-3.66) (-1.98) (-2.24)
σ(Downstream) 0.02 0.02 0.02 0.02

(2.60) (1.95) (1.39) (1.73)

Controls No Yes No Yes No Yes No Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Adj.-R2 0.50 0.51 0.40 0.41 0.57 0.57 0.53 0.54
Obs. 18794 17703 32253 30392 10154 9545 10673 10065
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Table OA.6.4: Investment under supply-chain uncertainty: recent subsample
The table reports the relation between a firm’s investment rate and the contemporaneous level of
the firm’s upstream uncertainty (uncertainty of the firm’s suppliers), the firm’s downstream uncer-
tainty (uncertainty of the firm’s customers), and the firm’s own uncertainty. The results are based
on estimating regression (3), where yi,t is firm i’s investment rate obtained from the most recent
annual report as measured at time t. The benchmark upstream and downstream uncertainty are
constructed at time t following the procedure outlined in Section 3.1. In all specifications we include
firm and year fixed effects. In all specifications that feature upstream (downstream) uncertainty we
control for the number suppliers (customers) of each firm. In even column we include additional
control variables including book-to-market ratio, stock return momentum, financial constraints in-
dex, profitability, and Tobin’s q. The definitions of all variables are provided in Section OA.3.1 of
the Internet Appendix. All regressions are estimated using a panel of firm-year observations rang-
ing from 1976 to 2018. t-statistics reported in parentheses are based on standard errors that are
clustered at the firm level.

(1) (2) (3) (4) (5) (6) (7) (8)
σ(Own) -0.06 -0.03 -0.09 -0.08 -0.04 -0.04 -0.06 -0.02

(-6.10) (-2.60) (-6.23) (-5.61) (-1.85) (-1.54) (-3.63) (-0.98)
σ(Upstream) -0.03 -0.03 -0.02 -0.02

(-3.36) (-3.53) (-1.77) (-1.99)
σ(Downstream) 0.03 0.02 -0.00 -0.01

(2.96) (2.20) (-0.30) (-0.61)

Controls No Yes No Yes No Yes No Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Adj.-R2 0.40 0.44 0.50 0.51 0.42 0.44 0.49 0.52
Obs. 65854 61173 18378 17294 23995 22622 11746 11121
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Table OA.6.5: Investment and P/E under supply-chain uncertainty: weighted un-
certainties
The table reports the relation between a firm’s investment rate, P/E ratio, and the contempo-
raneous level of the firm’s upstream uncertainty (uncertainty of the firm’s suppliers), the firm’s
downstream uncertainty (uncertainty of the firm’s customers), and the firm’s own uncertainty. The
results are based on estimating regression (3). In Column (1)–(4) yi,t is firm i’s investment rate
obtained from the most recent annual report as measured at time t. In Column (5)–(8) yi,t is firm
i’s P/E ratio at time t. Let Si,t be the set of suppliers of firm i at time t, and let Ci,t be the
set of its customers. Upstream uncertainty is defined by σ(Upstream)i,t =

∑
s∈Si,t

ws,tσs,t, where

ws,t = sales,t/
∑
k∈Si,t

salek,t, and sale is the log of firm k sales. Downstream uncertainty is defined

by σ(Downstream)i,t =
∑
c∈Ci,t

wc,tσc,t, where wc,t = cogsc,t/
∑
k∈Ci,t

cogsk,t, and cogs is the log
of firm k cost of goods sold. Each firm’s own uncertainty is constructed at time t following the
procedure outlined in Section 3.1. In all specifications we include firm and year fixed effects. In all
specifications that feature upstream (downstream) uncertainty we control for the number suppliers
(customers) of each firm. In even column we include additional control variables including book-to-
market ratio, stock return momentum, financial constraints index, profitability, and Tobin’s q. The
definitions of all variables are provided in Section OA.3.1 of the Internet Appendix. All regressions
are estimated using a panel of firm-year observations ranging from 1976 to 2018. t-statistics reported
in parentheses are based on standard errors that are clustered at the firm level.

Panel A: I/K Panel B: P/E

(1) (2) (3) (4) (5) (6) (7) (8)
σ(Own) -0.08 -0.03 -0.09 -0.04 -0.06 -0.04 -0.07 -0.05

(-5.56) (-2.22) (-8.06) (-3.08) (-3.48) (-2.17) (-5.97) (-3.88)
σ(Upstream) -0.03 -0.03 -0.02 -0.02

(-3.00) (-3.38) (-1.96) (-1.72)
σ(Downstream) 0.04 0.03 0.02 0.02

(4.88) (3.26) (2.26) (1.55)

Controls No Yes No Yes No Yes No Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Adj.-R2 0.50 0.53 0.40 0.44 0.14 0.15 0.14 0.14
Obs. 18773 17683 32203 30346 18429 17379 31015 29237
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OA.7 Additional macro-level results

Figure OA.7.2: Impulse responses using ex-ante macro-level upstream uncertainty
The figure shows impulse response functions (IRF) from a one standard deviation shock to macro-
level upstream ex-ante uncertainty to the quarterly growth rates of industrial production, real con-
sumption, real investment, real GDP, and the levels of the aggregate price-dividend ratio and the
risk-free rate. We estimate the IRFs using smooth local projection (Barnichon and Brownlees (2019))
method of Equation (6) for horizons that range from one to 16 quarters ahead. The ex-ante (pre-
dictable) components of future macro-level upstream realized volatility is via equation (7). Detailed
descriptions on the variables included in equation (6) are provided in Section OA.3.2 of the Online
Appendix. The estimated IRFs are denoted by solid lines, while 90% confidence intervals are repre-
sented by the dashed lines. The sample period ranges from 1974Q1 to 2018Q4.
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Figure OA.7.3: Impulse responses from ex-ante macro-level downstream uncertainty
The figure shows impulse response functions (IRF) from a one standard deviation shock to macro-
level downstream ex-ante uncertainty to the quarterly growth rates of industrial production, real
consumption, real investment, real GDP, and the levels of the aggregate price-dividend ratio and
the risk-free rate. We estimate the IRFs using smooth local projection (Barnichon and Brownlees
(2019)) method of Equation (6) for horizons that range from one to 16 quarters ahead. The ex-ante
(predictable) components of future macro-level downstream realized volatility is via equation (7).
Detailed descriptions on the variables included in equation (6) are provided in Section OA.3.2 of the
Online Appendix. The estimated IRFs are denoted by solid lines, while 90% confidence intervals are
represented by the dashed lines. The sample period ranges from 1974Q1 to 2018Q4.
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Table OA.7.6: Market price of risk of macro-level supply-chain uncertainties: ro-
bustness
The table reports robustness checks for the market prices of risk associated with macro-level up-
stream and downstream uncertainty (σU and σD, respectively). We estimate these market prices of
risk via a generalized method of moments procedure based on the stochastic discount factor (SDF)
given by equation (8) and the Euler equation given by E

[
Mtr

e
i,t

]
= 0. When estimating these prices

of risk we use the ex-ante (predictable) components of future macro-level upstream and downstream
realized volatility, obtained via equation (7) at the monthly frequency. We control for excess market
returns MKTRF as a risk factor, capturing first-moment fluctuations in productivity. In Panel
A, we use the same ex-ante macro-level uncertainties as in the benchmark analysis but we change
the menu of testing assets. We use a set of 62 test assets, comprised of 25 portfolios sorted on
size and book-to-market, the 17 Fama-French industry portfolios, 10 momentum-sorted portfolios,
and 10 investment-sorted portfolios, or 92 test assets, comprised of the 62 aforementioned test as-
sets plus 10 short-term reversal-sorted portfolios, 10 long-term reversal-sorted portfolios, and 10
profitability-sorted portfolios. In Panel B, we use the same menu of testing assets as in the bench-
mark analysis, but we change the predictors used to construct the exante uncertainties, Γt, by (i)
excluding downstream (upstream) volatility when measuring the ex-ante component of upstream
(downstream) uncertainty, (ii) excluding the default spread and inflation rate, or (iii) excluding the
price-to-dividend ratio and term spread, while retaining each of the remaining variables in Γt. The
t-statistic associated with each factor risk premium is reported in parentheses, and the mean abso-
lute error (MAE) associated with each estimation procedure is reported in the bottom row of each
panel. Monthly data spanning February 1974 to December 2018 is used to estimate each model.

Panel A: Test assets Panel B: Controls
Excluded controls None Other vol. DEF/INFL PD/TERM
Portfolios 62 92 25 42 25 42 25 42
MKTRF 2.05 1.94 3.10 3.07 3.25 3.16 3.01 3.03

(1.85) (1.86) (2.39) (2.71) (2.57) (2.80) (2.28) (2.67)
σU -1.97 -1.79 -1.87 -1.17 -1.78 -1.17 -2.34 -1.41

(-4.51) (-5.19) (-3.42) (-3.09) (-3.20) (-3.01) (-3.53) (-3.11)
σD 2.70 2.20 3.87 2.50 3.52 2.40 4.66 2.90

(2.68) (2.83) (3.13) (2.70) (3.01) (2.72) (3.23) (2.77)
MAE 0.96 0.84 0.94 0.96 0.96 0.97 0.93 0.96
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Figure OA.7.4: COVID-19 crisis: VIX, downstream uncertainty, and industrial pro-
duction
The figure shows the monthly time series of (i) the VIX index (top panel), (ii) the orthogonal compo-
nent of macro-level downstream uncertainty (middle panel), and (iii) the industrial production index
(bottom panel). Data on the VIX and industrial production index from FRED. We compute the
component of downstream uncertainty that is orthogonal to upstream uncertainty via the residuals
from a contemporaneous projection of upstream uncertainty onto downstream uncertainty. Each
time series spans from October 2019 to the end of September 2019.
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